به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "well log data" در نشریات گروه "مهندسی شیمی، نفت و پلیمر"

تکرار جستجوی کلیدواژه «well log data» در نشریات گروه «فنی و مهندسی»
جستجوی well log data در مقالات مجلات علمی
  • Shaghayegh Zarei Roodbaraki, Vahid Tavakoli *, Sogand Asadolahi Shad

    Efforts have been dedicated to correlating pore throat sizes with petrophysical and geological parameters. Log data is helpful in examining and analyzing the degree of pore type, the presence of clay minerals as well as porosity and the density of the reservoir. This study aims to establish a relationship between pore throat sizes and well log data through regression analysis. Well-logging data are routinely accessible and can be compared with the core data.The research uses mercury injection capillary pressure, core samples, and well log data from three wells within a field in the central Persian Gulf region. Equations were developed to link data from various well logs and their combinations to pore throat sizes in the reservoir. To address with challenges, core plugs were categorized into more homogeneous groups using Winland and flow zone indicator rock typing methods. The Winland method revealed that equations within each rock type exhibited low R2 values due to significant porosity variations. Conversely, integrating data from all seven rock types yielded better fits as the diverse porosity values counterbalanced each other's effects. However, the flow zone indicator rock typing approach did not enhance results as it was designed for circular and cylindrical capillary tubes, making it less effective for developing complex equations in carbonate reservoirs. The findings underscore the significance of defining homogeneous units accurately, as this step is crucial for enhancing results and establishing robust relationships between pore throat sizes and well log data. By integrating data from various rock types and refining the approach to defining homogeneous units, the study demonstrates the potential for improving the accuracy and applicability of pore throat size predictions in carbonate reservoirs.

    Keywords: Well Log Data, Pore Throat Size, Regression Analysis, Rock Typing, Persian Gulf
  • Meysam Rajabi *, Hamzeh Ghorbani, Saeed Khezerloo-Ye Aghdam
    Shear wave velocity (Vs) is one of the key geomechanical parameters effective in the drilling of hydrocarbon reservoirs. In this study, a novel machine learning (extra learning machine (ELM)) approach is developed to predict Vs based on four input variables obtained from well log, including neutron porosity (NPHI), bulk density (RHOB) and gamma-ray (GR). Two algorithms multi-layer perceptron (MLP) and ELM and various empirical equations (Brocher, Eskandari et al., Castagna et al. and Pickett) have been used to predict Vs in this paper. The results show that the performance accuracy for these models includes: ELM> MLP> Castagna et al. > Eskandari et al. > Pickett> Brocher. So, the result that shows the ELM model has higher accuracy than the other machine learning (MLP) approach and also other empirical equations (RMSE = 0.0444 km/s and R2 = 0.9809). Some advantages to the other artificial neural network approach include higher accuracy and performance characteristics, simple algorithm learning, improved performance, nonlinear conversion during training, no stuck in local optimal points, and it is over fitting. The novelty used in this paper is the type of newly implemented artificial model (ELM) and the number of input parameter. This approach possesses to the higher power, speed and accuracy than the methods used by other researchers to predict Vs.
    Keywords: Shear wave velocity, ELM, MLP, Machine Learning, Well Log Data
  • هدی عبدی زاده، علی کدخدایی، مسعود شایسته، محمدحسین حیدری فرد
    کل کربن آلی TOC یکی از پارامترهای مهم ژئوشیمیایی برای ارزیابی پتانسیل هیدروکربنزائی سنگ منشاء است. اندازهگیری این پارامتر نیاز به انجام آزمایشات ژئوشیمی بر روی کنده های حفاری دارد که پرهزینه و وقت گیر است. به طور کلی، سنگهای غنی از مواد آلی توسط نگاره های پتروفیزیکی با تخلخل بالا، زمان عبور صوت بالا، چگالی پایین، پرتو گاما بالاتر و مقاومت ویژه بیشتر از سایر سنگها مشخص میشوند. در این مطالعه، مدلهای الگوریتم ژنتیک خطی و غیر خطی جهت تخمین کل کربن آلی از داده های پتروفیزیکی برای سنگهای منشا کژدمی، گورپی و پابده در میدان نفتی اهواز استفاده شد. از مدل الگوریتم ژنتیک خطی نتایج معتبرتر و مقبول تری نسبت به مدل غیر خطی حاصل شد. راه حل های الگوریتم ژنتیک با آنالیز رگرسیون به واسطه ضرائب مناسب با معادلات TOC مقایسه شد. اجرای آنالیز براساس میانگین مربع خطا و ضریب همبستگی، کارایی بالاتر معادلات هوشمندانه مشتق شده را در مقایسه با آنالیز رگرسیون آماری نشان می دهد. در مرحله بعدی مطالعه، روش آنالیز خوشه ایجهت طبقه بندی نگار TOC تخمین زده شده و شناسایی زونهای ژئوشیمیایی مورد استفاده قرار گرفت. نتایج مدل الگوریتم ژنتیک به شکل مقبول، سنگهای منشا را با استفاده از مدل آنالیز خوشه ایبه رخساره های غنی و فقیر از مواد آلی تقسیم کردند.
    کلید واژگان: کل کربن آلی, الگوریتم ژنتیک, پیرولیز راک, ایول, داده های چاهپیمایی, رخساره های آلی, آنالیز خوشه ای
    Hoda Abdizadeh, Ali Kadkhodaie, Masoud Shayeste, Mohammad Hosein Heidarifard
    Total organic carbon (TOC) is one of the important parameters for the evaluation of the hydrocarbon generation potential of source rocks. The measurement of this parameter requires conducting geochemical analysis on cutting samples، which is expensive and time consuming. In general، organic rich rocks are characterized by higher porosity، higher sonic transit time، lower density، higher gamma ray، and higher resistivity compared to other rocks. In this study، the linear and non-linear genetic algorithm models were used to estimate TOC from petrophysical data for the Kazhdumi، Gurpi، and Pabdeh source rocks in Ahwaz oilfield. The linear genetic algorithm model provided more reliable and acceptable results than the non-linear model. The genetic algorithm solutions for fitting coefficients to TOC equations were compared to a regression analysis. Performance analysis based on MSE and correlation coefficient indicates the higher performance of the intelligently derived equations in comparison to the statistical regression analysis. In the next step of the study، a cluster analysis technique was utilized for the classification of the estimated TOC log and the identification of geochemical zones. In the light of the acceptable results of the GA model، source rocks were classified into the organic-rich and organic-lean facies by using a cluster analysis method.
    Keywords: Total Organic Carbon, Genetic Algorithm, Rock, Eval Pyrolysis, Well Log Data, Organic Facies, Cluster Analysis
  • Mahdi Rastegarnia, Ali Kadkhodaie
    Flow unit characterization plays an important role in heterogeneity analysis and reservoir simulation studies. Usually, a correct description of the lateral variations of reservoir is associated with uncertainties. From this point of view, the well data alone does not cover reservoir properties. Because of large well distances, it is difficult to build the model of a heterogenic reservoir, but 3D seismic data provides regular sampling that can improve reservoir spatial description.
    In this study, seismic attribute analysis was used to predict flow zone indicator (FZI) values of a carbonate reservoir by using seismic and well log data. First, a 3D acoustic impedance volume was created as an external attribute for seismic data analysis. To improve the ability of FZI prediction, the maximum number of attributes from multiattribute analysis was computed by using a step-wise regression technique. To verify the results of multiattribute technique, the cross plot analysis of multiattribute method was performed. It was found that the R2 value of the correlation between the predicted and actual FZI is as high as 0.859 with an average error value of 2.34 µm. The analysis of the results of multiattribute technique showed that it was an effective technique for FZI prediction in hydrocarbon reservoirs. Such accuracy in building a 3D distribution of FZI provides a good insight into reservoir production zones. The results clearly indicate that the methodology proposed herein can successfully be used to specify the locations of new wells for the purpose of future production or injection plans.
    Keywords: Multiattribute Analysis, Seismic Attribute, Well Log Data, Flow Zone Index, Acoustic Impedance Volume
  • Mohsen Karimian, Nader Fathianpour, Jamshid Moghaddasi
    Porosity is considered as an important petrophysical parameter in characterizing reservoirs, calculating in-situ oil reserves, and production evaluation. Nowadays, using intelligent techniques has become a popular method for porosity estimation. Support vector machine (SVM) a new intelligent method with a great generalization potential of modeling non-linear relationships has been introduced for both regression (support vector regression (SVR)) and classification (support vector classification (SVC)) problems. In the current study, to estimate the porosity of a carbonate reservoir in one of Iran south oil fields from well log data, the SVR model is firstly constructed; then the performance achieved is compared to that of an artificial neural network (ANN) model with a multilayer perceptron (MLP) architecture as a well-known method to account for the reliability of SVR or the possible improvement made by SVR over ANN models. The results of this study show that by considering correlation coefficient and some statistical errors the performance of the SVR model slightly improves the ANN porosity predictions.
    Keywords: Petrophysical Parameter, Reservoirs, Porosity, Well Log Data, Support vector machine
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال