به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "reserve estimation" در نشریات گروه "مهندسی معدن"

تکرار جستجوی کلیدواژه «reserve estimation» در نشریات گروه «فنی و مهندسی»
جستجوی reserve estimation در مقالات مجلات علمی
  • رضا روکی*، محمد ناصر محمدی، محسن صفری

    در این مطالعه به ارزیابی و تخمین ذخیره کانسار شماره IV (معدنجو)،یکی از آنومالی های شرقی معدن سنگ آهن سنگان، با استفاده از روش های زمین آماری پرداخته شده است. داده های مورد استفاده شامل داده های توپوگرافی و اطلاعات49 حلقه گمانه به متراژ کلی 8549 متر می باشد. محدوده مورد مطالعه حدود 132 هکتار و تغییرات عیار آهن در محدوده از 0/66 درصد تا 64 درصد می باشد. مدل سازی کانسار در این محدوده توسط نرم افزار SURPAC و تحلیل‏ های آماری به کمک SPSS انجام شده است. ابعاد بلوک ها با توجه به فواصل کارهای اکتشافی، در راستای X و Y معادل 25 متر و در امتداد محور Z با توجه به ارتفاع پله های استخراجی در آنومالی های غربی و مرکزی برابر با 10 متر در نظر گرفته شد. همچنین زیربلوک هایی در امتداد مرزهای ماده معدنی در مدل اضافه گردید و تعداد 2100 بلوک ساخته شد. تخمین ذخیره کانسار IV براساس مقادیر مختلف عیار حد و با دو روش کریجینگ و عکس مجذور فاصله ارایه گردیده است. تناژ برآورد شده بر اساس عیار حد 20 درصد با روش کریجینگ معادل 12985979 تن و در روش عکس مجذور فاصله 12907748 تن می باشد.

    کلید واژگان: تخمین ذخیره, سنگ آهن سنگان, کانسار IV (معدنجو), روشهای زمین آماری, نرم افزار SURPAC
    Reza Rooki *, Mohammad Naser Mohammadi, Mohsen Safari

    In this study, the assessment and reserve estimation of the IV (Madanjo) deposit as one of the eastern anomalies of Sangan iron mines, has been done using geostatistical methods. The used data in this study include topographic data and 49 boreholes information with a total drilling of 8549 meters. Reserve modeling was performed by SURPAC software and statistical analysis was done using SPSS. The dimensions of the blocks according to the distances of exploration works, in the direction of X and Y are equal to 25 meters and along the axis of Z is equal 10 meters according to the bench height in the western and central anomalies. Also, sub-blocks were added along the mineral boundaries in the model and 2100 blocks were built.The reserve estimation of IV deposit has been presented based on different values of cut off grades using kriging and inverse distance square methods. The estimated tonnage based on 20% cut off grade with the kriging method is equal to 12985979 tons and in the inverse square method is 12907748 tons.

    Keywords: Reserve estimation, Sangan iron mines, IV (Madanjo) deposit, Geostatistical methods, SURPAC software
  • H. Shahriari *, M. Honarmand, S. Mirzaei, A. Saffari

    This research work aims to discuss the methodology of using the drone-based data in the initial steps of the exploration program for the dimension stone deposits. A high-resolution imaging is performed by a low-cost commercial drone at the Emperador marble quarry, Kerman province, Iran. A ground resolution of 3 cm/pix is achieved by imaging at an altitude of 70 m in order to ensure the precise lithological and structural mapping. An accuracy of less than 5 cm is promised for the 3D photogrammetric products. Hence, the flight is performed with an 80% front and a 70% lateral image overlap. Furthermore, 18 ground control points (GCPs) are used in order to meet the required accuracy. Photogrammetric processing is done by the Agisoft PhotoScan software. The geology map is prepared through the visual geo-interpretation of the orthophoto image. The faults and fractures are delineated using the high-resolution orthophoto and hill-shade model in the ArcGIS software. Accordingly, the density map of fractures is produced, and the deposit is divided into five structural zones. The 3D deposit model with an accuracy of 2.8 cm is reconstructed based on the digital elevation model (DEM). A primary block model is generated using the 3D deposit model in the Datamine software in order to determine the resource for each structural zone. Finally, considering the amount of resource and situation of fractures, the priority of exploration for developing activities and appropriate methods is defined for each structural zone. The research work results have convinced us to include drone-based imagery in the initial steps of dimension stone exploration to consume the time and cost of the operation.

    Keywords: drone-based imagery, Photogrammetry, 3D deposit model, block model, reserve estimation
  • Seyyed Ali Nezamolhosseini, Seyyed Hossein Mojtahedzadeh *, Javad Gholamnejad
    Geo-statistical methods for reserve estimation are difficult to use when stationary conditions are not satisfied. Artificial Neural Networks (ANNs) provide an alternative to geo-statistical techniques while considerably reducing the processing time required for development and application. In this paper the ANNs was applied to the Choghart iron ore deposit in Yazd province of Iran. Initially, an optimum Multi Layer Perceptron (MLP) was constructed to estimate the Fe grade within orebody using the whole ore data of the deposit. Sensitivity analysis was applied for a number of hidden layers and neurons, different types of activation functions and learning rules. Optimal architectures for iron grade estimation were 3-20-10-1. In order to improve the network performance, the deposit was divided into four homogenous zones. Subsequently, all sensitivity analyses were carried out on each zone. Finally, a different optimum network was trained and Fe was estimated separately for each zone. Comparison of correlation coefficient (R) and least mean squared error (MSE) showed that the ANNs performed on four homogenous zones were far better than the nets applied to the overall ore body. Therefore, these optimized neural networks were used to estimate the distribution of iron grades and the iron resource in Choghart deposit. As a result of applying ANNs, the tonnage of ore for Choghart deposit is approximately estimated at 135.8 million tones with average grade of Fe at 56.14 percent. Results of reserve estimation using ANNs showed a good agreement with the geo-statistical methods applied to this ore body in another work.
    Keywords: Reserve estimation, Artificial Neural Networks, iron ore deposit, Choghart mine
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال