جستجوی مقالات مرتبط با کلیدواژه "climatological drought" در نشریات گروه "مهندسی آب"
تکرار جستجوی کلیدواژه «climatological drought» در نشریات گروه «فنی و مهندسی»جستجوی climatological drought در مقالات مجلات علمی
-
در تحقیقات مختلف، پارامترهای هواشناسی متفاوتی در پیش بینی دوره های کم بارش مورد توجه قرار گرفته اند. در این تحقیق نمایه بارش استاندارد شده (SPI) برای 6 سناریوی فصل (پاییز، زمستان، بهار، پاییز+ زمستان، زمستان+ بهار و پاییز تا بهار) محاسبه شده و متغیرهای هواشناسی پیش بینی کننده دمای هوا (در سطح 300، 500، 700 و 850 میلی بار) و ارتفاع ژئوپتانسیل (در سطح 300، 500، 700 و 850 میلی بار) در محدوده طول و عرض جغرافیایی 0 تا 60 درجه شمالی و 0 تا 90 درجه شرقی، در سالهای (1354-1386) برای پیش بینی پدیده خشکسالی هواشناسی مورد استفاده قرار گرفت. در این مدل پیش بینی، بازه زمانی پیش بینی کننده بین ماه های اکتبر تا آوریل برای SPI پیش بینی شده در همان بازه زمانی قرار دارد. نمایه بارش استاندارد شده در حوضه های مورد مطالعه (حوضه سدهای طالقان و ماملو) بر اساس بارش متوسط حوضه ها که به روش میانگین معکوس فاصله وزندار محاسبه شده، تخمین زده شده است. یکی از روش های یادگیری آماری با استفاده از ناظر به نام ماشین بردار پشتیبان (SVM) برای تدوین مدل پیش بینی SPI استفاده شد. با استفاده از تکنیک آماری مبتنی بر آنتروپی مشترک اطلاعات، نقاط موثر بر بارش حوضه سدهای تهران در فصل بهار بیشتر در جنوب، جنوب غربی و شمال غربی کشور و در فصل پائیز، شمال، شمال غربی و جنوب و در زمستان در شمال غربی و غرب کشور تشخیص داده شدند. نتایج مدل SVM در اکثر موارد پیش بینی، دقت مناسب داشت. این روش می تواند در پیش بینی رفتارهای غیرخطی داده های هواشناسی با طول دوره آماری کوتاه مورد استفاده قرار گیرد. این دقت برای دسته بندی SPI فصلهای پاییز و بهار بیشتر از سایر سناریوها است.
کلید واژگان: خشکسالی هواشناسی, ماشین بردار پشتیبان, نمایه بارش استاندارد شده, استان تهرانIn various researches, implementation of meteorological parameters in drought prediction is studied. In the current work, meteorological drought classes based on Standardized Precipitation Index (SPI) for six seasonal scenarios (autumn, winter, spring, autumn + winter, winter +spring, and autumn + winter + spring) and meteorological predictors contained ground and sea surface temperature, weather temperature (at 300, 500, 700 and 850 mi bar) and geopotential height (at 300, 500, 700 and 850 mi bar) wide of North (0, 60) and East (0, 90) was applied in prediction models based on data from 1975 to 2005. In these models, temporal range of meteorological predictors is between October to April month on the same predicted SPI. SPI was calculated based on mean precipitation at seasonal time scale in the main watershed of Tehran (Taleghan, Mamloo) by Inverse Weighted Distance method. The well known statistical supervised machine learning method, support vector machine (SVM), is applied to predict SPI. Regarding to selected data points, the effective regions on Tehran precipitation are southern, southwestern and northwestern of Iran in spring, northern and northwestern in autumn and northwestern and western in winter. SVM depicted accurate results in prediction of SPI, spatially prediction of SPI in all scenarios, and it can be proposed as a very suitable statistical learning method in investigating of nonlinear behavior of meteorological phenomena with a short samples. The predicted SPI in spring and autumn are more accurate than the other scenarios.Keywords: Climatological Drought, Support Vector, Standardized Precipitation Index (SPI), Tehran Province
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.