به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « lattice Boltzmann method » در نشریات گروه « فنی و مهندسی »

  • A. Shahriari, S. A. Mirbozorgi, S. Mirbozorgi
    This paper addresses the need for an efficient and adaptable approach to solve linear acoustic wave equations in the lattice Boltzmann method (LBM). A novel lattice-adaptive model is introduced, derived through a Chapman–Enskog analysis, which utilizes a single relationship for the equilibrium distribution function across all lattice structures. The intended derivation begins by considering a standard equilibrium distribution function with unknown coefficients. By selecting the displacement of the acoustic wave as the zero-order microscopic moment, accurate recovery of the macroscopic wave equation is ensured. Unlike existing methods, the model simplifies the complexity associated with equilibrium distribution functions and offers greater versatility. The model is validated through extensive benchmark testing on one and two-dimensional wave propagation problems. Results demonstrate excellent agreement with analytical solutions, with maximum root mean square errors of 10-3 (<0.1% error) and minimum errors of 10-6 (<0.0001% error), indicating high predictive accuracy (>99.9%). Additionally, the model exhibits second-order spatial accuracy, with the relative error norm E_2 displaying slopes close to 2, signifying a spatial accuracy of second order. The numerical simulations show a decrease in errors as the mesh size becomes more refined.
    Keywords: Chapman-Enskog Expansion, Lattice-Boltzmann Method, Analytical Solution, Acoustic Wave Propagation, Lattice Structure}
  • بابک روشنی، احمدرضا رحمتی*
    در کار حاضر رسوب میکروذرات برای جریان در کانال با مانع بیضوی با مساحت ثابت اما با ضریب شکل های متفاوت بررسی شده است. شبیه سازی عددی به روش شبکه بولتزمن به همراه روش لاگرانژی برای مسیریابی ذرات انجام شده است. مدل شبکه ی استفاده شده در کار حاضر مدل دو بعدی و 9 سرعته،9Q2D، است. از شرط مرزی منحنی شکل برای مرز موانع استفاده شده است. ذرات با شرایط استاندارد در ورودی کانال تزریق شده اند. گرانش، نیروی دراگ، نیروی براونی و نیروی لیفت سافمن در معادله حرکت ذرات در نظر گرفته شده است. پارامتر هندسی نسبت اقطار مانع که به عنوان ضریب شکل در نظر گرفته می شود با پارامترهای جریان مانند عدد رینولدز برای رسوب و پراکندگی ذرات در نظر گرفته شده اند. نتایج مورد نظر برای هر دو متغیر ضریب شکل و عدد رینولدز با 8 ضریب شکل و 5 عدد رینولدز مختلف بررسی شده اند. نتایج نشان از تاثیر ضریب شکل بر روی جریان سیال با ممانعت از عبور جریان و تغییر در نوع جریان دارد. این تغییر در اعداد رینولدز مختلف نیز قابل مشاهده است. همچنین تغییر ضریب شکل با تغییر در نوع جریان و مکانیزم های رسوب باعث تغییر در نیروهای وارده بر ذرات و رسوب ذرات می شود. به طور کلی تاثیر متغیرهای مورد نظر با تعداد ذرات رسوب شده تفسیر شده است.
    کلید واژگان: روش شبکه بولتزمن, مسیریابی ذرات, مکانیزم رسوب, ضریب شکل}
    Babak Roshani, Ahmadreza Rahmati *
    In the current study, transportation of the microparticles deposition through a channel has been investigated where elliptical obstacle with constant cross sectional area but different shape factors was assumed in the channel. Numerical simulation was conducted using lattice Boltzmann method, and Lagrange method was used for particle tracking. A two-dimensional and nine-velocity model was used as the network model. A curved boundary condition was applied for the obstacle boundaries. In the designed model, particles at standard condition were injected at the inlet of the channel. Gravity force, drag force, Brownian force and Soffman lift force were applied in the motion equation of the particles. The effect of shape factor as a geometrical parameter, which was defined as the ratio of the diameters of elliptical obstacle, and the flow parameters such as Reynolds’ number was examined on the particle deposition and particle scattering. Results were examined at eight different shape factors and five different Reynolds numbers .Results revealed that the change in the shape factor varies the effect of the obstacle in the flowing stream, and also changes the flow regime. This variation was obtained at different Reynolds numbers. Furthermore, changes of the shape factor associated with variations in the flow regime and deposition mechanisms, changes the forces exerted on the particles. Generally, the effect of the mentioned parameters can be interpreted based on the number of the precipitated particles.
    Keywords: Lattice Boltzmann Method, Particle Tracking, Deposition Mechanism, Shape Factor}
  • M. Abid, N. Yasin, M. Saqlain *, S. Ul-Islam, S. Ahmad
    Flow past bluff bodies like square cylinders is important in engineering applications, but flow patterns behind staggered cylinder arrangements remain poorly understood. Existing studies have focused on tandem or side-by-side configurations, while offset orientations have received less attention. The aim of this paper is to numerically investigate flow dynamics and force characteristics behind two offset square cylinders using the single relaxation time lattice Boltzmann method. The effects of changing both the Reynolds number (Re = 1-150) and gap spacing ratio (g* = 0.5-5) between the cylinders are analyzed. Instantaneous vorticity contours, time histories of drag and lift coefficients, power spectra of lift, and force statistics are used to characterize the flow. Different flow regimes have been identified in various ranges of Re and g* - including steady, chaotic, flip-flopping, single-bluff body, and fully developed flows. Larger spacings led to more regular vortex dynamics and force statistics. Smaller spacings promoted complex interactions and modulated forces. Offset cylinder orientation and spacing significantly influence flow features in staggered arrangements. The findings provide new modalities for controlling fluid dynamics past bluff bodies by tuning Re and gap parameters.
    Keywords: Lattice Boltzmann Method, Computational Fluid Dynamics, Statistical Analysis, Analysis Of Forces, Numerical Analysis, Vortex Shedding Frequency}
  • احسان مهرابی گوهری*، محمد سفید، علیرضا ملوزه

    در این پژوهش، با بکارگیری روش ترکیبی شبکه بولتزمن و  نمایه هموار، برای بستر با سیال غیرنیوتنی قانون توانی،  اثر تغییر پارامترهای هندسی و سیال بر رفتار انبساطی بستر  مطالعه شده است. بررسی ها برای 7 هندسه متفاوت و 4 سیال نیوتنی و غیرنیوتنی با اندیس قاعده توانی 0.8 تا 1 انجام شده است. نتایج بستر با سیال  نیوتنی تخلخل بیشتری نسبت به بستر با سیال غیرنیوتنی نشان می دهند. همچنین افزایش اندیس قاعده توانی سبب افزایش تخلخل بستر شده و تخلخل بستر غیرنیوتنی با افزایش چگالی ذرات جامد و ارتفاع اولیه بستر کاهش یافته است. بررسی نسبت تخلخل در بسترغیر نیوتنی نشان داد که با افزایش قطر ذرات جامد این نسبت کاهش و با افزایش قطر بستر سیالی، افزایش می یابد. علاوه بر این مقایسه نتایج بستر با محلول کربوکسی متیل سلولز 0.1%  به عنوان سیال نشان داد که تاثیر کاهش قطر ذرات در بستر برای افزایش نسبت تخلخل 2 برابر بیشتر از تاثیر افزایش قطر بستر است. در نهایت خروجی های مدل نشان دادند نسبت تخلخل برای بستر شامل ذرات جامد با قطرهای مختلف، کمتر از بستر حاوی ذرات با قطرهای برابر است.

    کلید واژگان: بستر سیالی مایع-جامد, روش شبکه بولتزمن, روش نمایه هموار, سیال غیرنیوتنی قانون توانی, تخلخل بستر سیالی, حداقل سرعت سیالیت}
    E. Mehrabi Gohari *, M. Sefid, A. R. Maloozeh

    In this research, by using the combined lattice Boltzmann and smooth profile method, for power law non-Newtonian fluidized bed, the effect of changing the geometric and fluid on the expansion behavior of the bed has been studied. Investigations have been carried out for 7 different geometries and 4 Newtonian and non-Newtonian fluids with a power law index of 0.8 to 1. The results of the bed with Newtonian fluid show more porosity than the bed with non-Newtonian fluid. Also, increasing the index of the power law caused an increase in the porosity of the bed, and the porosity of the non-Newtonian bed decreased with an increase in the density of solid particles and the initial height of the bed. Investigating the porosity ratio in the non-Newtonian bed showed that with the increase in the diameter of the solid particles, this ratio decreases and increases with the increase in the diameter of the fluid bed. In addition, comparing the results of the bed with carboxymethyl cellulose 0.1% solution as fluid showed that the effect of reducing the particle diameter in the bed, to increase the porosity ratio is 2 times more than the effect of increasing the diameter of the bed. Finally, the output of the model showed that the porosity ratio for the bed containing solid particles with different diameters is lower than the bed containing particles with equal diameters.

    Keywords: Liquid-solid fluidized bed, Lattice Boltzmann method, smoothed profile method, Power-law non-Newtonian liquid, fluidized bed porosity, minimum fluidization velocity}
  • Mehdi Moslemi, Kourosh Javaherdeh *, HamidReza Ashorynejad

    In this paper, a multi-component multiphase pseudopotential Lattice Boltzmann method with multi relaxation time (MRT) collision operator is presented to examine the dynamic behavior of liquid droplets movement and coalescence process in the gas channel of PEMFC. In the numerical method, the forcing term is improved to achieve a high-density ratio and thermodynamic consistency. First, the density ratio, Laplace law, and contact angle are validated with previous studies. Then, different parameters, such as operating temperature, pressure difference, surface contact angle, the radius of droplets, and distance between two droplets on the droplet movement and coalescence process are studied. The results revealed by rising temperature from 30 to 80 degrees, the speed of drop increases around 6 percent. The simulation results indicated that the rising of pressure gradient increases the gas flow velocity on the channel and leads to increasing the shear force and eventually faster movement of the droplet on the gas channel. Also, investigation of various contact angles shows that a hydrophilic surface causes a resistance force between the droplet and the wall and delays the removal of droplets. Moreover, droplet coalescence is useful for droplet movement because of increasing the velocity gradient on top of the droplet; consequently, the shear force on the droplet is raised during coalescence.

    Keywords: Lattice Boltzmann method, multi-component multiphase, coalescence process, fuel cell channel, liquid water droplet ‎interaction}
  • S. Khali *, R. Nebbali
    This work is a numerical study on the effects of the flow structures of the power-law fluid between two concentric cylinders with an upward laminar axial flow on levels of mixing and mean residence time through the Taylor Couette system. The cylindrical annular duct presents a radius ratio of 0.5 and an aspect ratio of 8. The inner cylinder is rotating while the outer one is kept at rest. The residence time distributions (R.T.D.) method and the mean residence time (Tm) are used to determine the number of tanks in series and the dispersion coefficient to evaluate levels of mixing. To this end, a pulsed input injection of a tracer is computing at the outlet of the annulus. As a main objective of this study, is to analyze the effect of the flow structure of a power-law fluid between two concentric cylinders on the mixing level and mean residence time in a Taylor Couette system. The novelty of our work is the use of power-law fluids as particles-carrying fluids. Several parameters, such as the axial Reynolds number (Re), the Taylor number (Ta), and the power-law index behavior (n), are used to show their impact on levels of mixing. It is shown that when n increases, the number of stirred tanks in series N increases for pseudoplastic fluids (n<1), indicating low levels of mixing while the parameter (N) decreases for dilatants fluids (n>1), revealing high levels of mixing. The increase of the power-law index in the range of 0.6<n<1 decreases the dispersion coefficient, indicating the non-ideal mixing in the duct. In addition, for further increase of the power-law index in the range of n>1 increases the dispersion coefficient points to the well-mixing.
    Keywords: Poiseuille-Taylor-Couette flow, Residence time distribution, Meantime, Lattice Boltzmann method, Non-Newtonians fluids}
  • Mohammad Salimi *, Mohammad Taeibi Rahni, Abolfazl Amiri Hezaveh, Mehdi Zakyani Rodsari
    In present research, the interaction between single liquid droplet with particles inside a porous media is investigated numerically in two dimensions. The He’s model is used to simulate two phase flow and multiple relaxation time collision operator is implemented to increase numerical stability. Simulations have performed in three non-dimensional body forces of 0.000108, 0.000144, 0.000180, porosity values of 0.75, 0.8, 0.85 and Ohnesorge range of 0.19-0.76. In the range of investigated non-dimensional parameters, two distinct physics of droplet trapping and break up have observed. The related results revels that for every values of investigated non-dimensional body forces and porosity, there is a critical Ohnesorge number that droplet breaks up occurs for larger values. This critical value decreases as non-dimensional body force and porosity increases. Based on these results, a droplet trapping or break up behavioral diagram is drown with respect to the investigated density ratio, Ohnsorge, Reynolds and Capilary numbers.
    Keywords: Porous media, Pore-scale, Two-phase flow, Droplet, Lattice Boltzmann Method}
  • یاسر جعفری، محمد طیبی رهنی، محمدرضا سلیمی، رینهارد میلر

    در مقاله حاضر روش های شبیه سازی جریان چندفازی در حضور سورفکتانت ها  در 3 دسته مبتنی بر ناویر-استوکس،  تابع توزیع و مبتنی بر نیروهای بین مولکولی طبقه بندی و هر یک جداگانه تشریح شده است. روش های مبتنی بر ناویر-استوکس در دو دسته روش های ردیابی سطح مشترک و روش های صید سطح مشترک قرار می گیرند. روش های مبتنی بر نیروهای بین مولکولی به عنوان روش های ذره مبنا و با دیدگاه لاگرانژی در برخورد با میدان جریان عمل می کنند. مدل های پرکاربرد در روش های مبتنی بر تابع توزیع  نیز در انتها معرفی شده اند. گستره وسیعی از روش های عددی انتخاب های زیادی را پیش روی پژوهشگران قرار داده است. شناخت و درک قابلیت ها و جزییات این روش ها کمک خواهد کرد تا با توجه به امکانات سخت افزاری، مناسب ترین روش عددی انتخاب و نتایج قابل اعتماد و مقرون به صرفه ای حاصل شود.

    کلید واژگان: سورفکتانت ها, جریان سیالات چندفازی, ناویر-استوکس, روش دینامیکی مولکولی, روش شبکه بولتزمن}
    Yaser Jafari, MohammadTaeibi Rahni, MohammadReza Salimi, Reinhard Miller

    In this article, the simulation methods of multiphase flow in the presence of surfactants are classified into 3 categories based on Navier-Stokes, distribution function, and based on intermolecular forces, and each one is described separately. Navier-Stokes-based methods fall into two categories: interface tracking methods and interface capture methods. Methods based on intermolecular forces act as particle-based methods with a Lagrangian perspective in dealing with the flow field. The widely used models in the methods based on the distribution function are also introduced at the end. A wide range of numerical methods has put many choices in front of researchers. Knowing and understanding the capabilities and details of these methods will help to select the most appropriate numerical method and obtain reliable and cost-effective results according to the hardware facilities.

    Keywords: Surfactants, Multiphase flow, Navier-Stokes, Molecular Dynamics Method, Lattice Boltzmann Method}
  • Nemat Ebrahimi, Hossein Ahmadi Danesh Ashtiani *, Davood Toghraie
    Using the lattice Boltzmann technique, the mixed convection of nanofluid inside an inclined trapezoidal cavity in the presence of a multidirectional magnetic field is investigated. The sides of the trapezoidal hollow are adiabatic, with the upper moveable wall being cold and the lower wall being sinusoidally heated. In simulations, the temperature and flow distribution functions are utilized to determine all parameters related to the temperature and flow fields. On the hot wall, the effects of various Rayleigh numbers (Ra = 103, 104, and 105), inclined cavity angles (θ= 0°-90°), volume fractions of nanoparticles (ϕ== 0-3 percent), magnetic field intensity (Ha = 0-100), and applied magnetic field angle (= 0°-90°) were studied. According to the research, raising the Rayleigh number enhances heat transfer. Moreover, when all other parameters are held equal, raising the nanoparticle volume fraction enhances the average Nusselt number. Increasing the Hartmann number reduces the flow velocity inside the cavity, hence reducing heat transmission. Changes in the cavity's slope and the angle of the applied magnetic field have an effect on the flow and heat transfer as well.
    Keywords: lattice boltzmann method, Natural convection, Trapezoidal cavity, Nanofluid}
  • E. Ezzatneshan *, A. A. Khosroabadi
    In this work, the accuracy of the multiphase lattice Boltzmann method (LBM) based on the phase-field models, namely the Cahn-Hilliard (C-H) and Allen-Cahn (A-C) equations, are evaluated for simulation of two-phase flow systems with high-density ratios. The mathematical formulation and the schemes used for discretization of the derivatives in the C-H LBM and A-C LBM are presented in a similar notation that makes it easy to implement and compare these two phase-field models. The capability and performance of the C-H LBM and A-C LBM are investigated, specifically at the interface region between the phases, for simulation of flow problems in the two-dimensional (2D) and three-dimensional (3D) frameworks. Herein, the equilibrium state of a droplet and the practical two-phase flow problem of the rising bubble are considered to evaluate the mass conservation capability of the phase-filed models employed at different flow conditions and the obtained results are compared with available numerical and experimental data. The effect of employing different equations proposed in the literature for calculating the relaxation time on the accuracy of the implemented phase-field LBMs in the interfacial region is also studied. The present study shows that the LBM based on the A-C equation (A-C LBM) is advantageous over that based on the C-H equation in dealing with the conservation of the total mass of a two-phase flow system. Also, the results obtained by the A-C LBM is more accurate than those obtained using the C-H LBM in comparison with other numerical results and experimental observations. The present study suggests the A-C LBM as a sufficiently accurate and computationally efficient phase-field model for the simulation of practical two-phase flows to resolve their structures and properties even at high-density ratios.
    Keywords: Lattice Boltzmann method, Multiphase flows, Cahn-Hilliard equation, Allen-Cahn equation, Comparative study}
  • محمد تقیلو*، سید علیرضا صفوی
    مقاله حاضر، به بررسی اختلاف دمای محلی، میان ماده تغییر فاز دهنده و محیط متخلخل دوبعدی طی فرآیند ذوب با نظر گرفتن جابجایی طبیعی و شرط مرزی سینوسی، می پردازد. بدین منظور از تابع توزیع چگالی، برای حل معادله تکانه و از دو تابع توزیع جداگانه برای حل معادلات انرژی جهت محاسبه اختلاف دمای محلی و کسر مایع ماده تغییر فاز دهنده، استفاده شده است. بررسی تاثیر پارامترهایی نظیر دامنه و فرکانس نوسان و عدد اسپارو بر درصد اختلاف دمای محلی و مقایسه کسر مایع در دو حالت حضور و عدم حضور جابجایی طبیعی، از اهداف این مقاله است. نتایج نشان می دهد که با افزایش فرکانس نوسان از 1 به 3، درصد اختلاف دمای محلی از 41/44 % به 67/53% افزایش یافته و با افزایش دامنه نوسان از 1 به 3، درصد اختلاف دمای محلی از 41/44 % به 20/56 % کاهش می یابد. همچنین، با افزایش عدد اسپارو از 322 به 6000، درصد اختلاف دمای محلی از 41/44 % به 4/21 %  کاهش می یابد. از سوی دیگر، مشاهده می شود که با تغییر فرکانس نوسان، کسر مایع نسبت به شرایط رسانش محض تغییر چندانی نمی کند؛ حال آنکه با افزایش دامنه نوسان، درصد انحراف کسر مایع نسبت به رسانش محض، افزایش می یابد..
    کلید واژگان: فرآیند ذوب, محیط متخلخل, اختلاف دمای محلی, دمای مرز سینوسی, روش بولتزمن شبکه ای}
    Taghilou Taghilou *, Seyed Alireza Safavi
    This paper investigates the local temperature difference between the phase change material and porous medium during the two-dimensional melting process by considering natural convection and applying sinusoidal boundary condition. Hence, the density distribution function is used to solve momentum equations and two separate distribution functions are used to solve energy equations to calculate the local temperature difference and liquid fraction of the phase change material. Also, the effect of parameters such as amplitude and frequency of oscillation and Sparrow number on the percentage of local temperature difference and comparison of liquid fraction in the presence and absence of natural convection, are studied. Results show that with increasing frequency from 1 to 3, the percentage of local temperature difference increased from 41.44% to 67.53%, and with increasing oscillation amplitude from 1 to 3, the percentage of local temperature difference is reduced from 41.44% to 20.56%. Also, by increasing the Sparrow number from 322 to 6000, the percentage of local temperature difference decreases from 41.44% to 4.21%. Also, it is observed that by changing oscillation frequency, liquid fraction does not change much compared to the conditions of pure conduction; however, as the amplitude of oscillation increases, the percentage of deviation of liquid fraction from the pure conduction increases.
    Keywords: Melting Process, Porous Medium, Local Temperature Difference, Sinusoidal Boundary Temperature, Lattice Boltzmann Method}
  • Mohammad Mohsen Peiravi, Javad Alinejad *
    This study investigated the effects of different arrangements of three-dimensional fibers on polymer matrix composite thermal conductivity under heat flux boundary conditions. The thermal lattice Boltzmann based on the D3Q7 (three dimensions and seven temperature vectors) method is utilized to illustrate the thermal conductivity in 7 cases of PMC with a different arrangement of 3D fibers. Nondimensional temperature fields, isothermals, nondimensional thermal conductivity coefficient, nondimensional mean, and local temperature in 7 cases of PMCs have been investigated. The non-dimensional thermal conductivity coefficient in each PMC has been analyzed to predict optimal levels of factors affecting this simulation to maximize and minimize the heat transfer rate. The results signified that nondimensional temperature field in a PMC with the arrangement of a fiber, triplet, and triangular perpendicular to heat flux had a greater rate than a PMC with the arrangement of fibers along the way heat flux. Also, the Maximum and minimum of nondimensional thermal conductivity coefficient were in PMC with the arrangement of triplet fibers perpendicular to heat flux,  and triangular fibers along the way heat flux, respectively.
    Keywords: Different fibers arrangement, Lattice Boltzmann method, Polymer matrix composite, Thermal conductivity}
  • محمد نعمتی، محمد سفید*

    در مطالعه حاضر، میزان آنتروپی تولید شده ناشی از انتقال حرارت دوگانه نانوسیال ترکیبی درون محفظه K شکل تحت اثر میدان مغناطیسی یکنواخت و غیریکنواخت و جذب/تولید گرما یکنواخت بررسی شده است. شبیه سازی با نوشتن کد رایانه ای به زبان فرترن و با استفاده از روش شبکه بولتزمن صورت پذیرفته است. تغییرات عدد رایلی، عدد هارتمن، ضریب جذب/تولید گرما، نسبت هدایت حرارتی، نسبت ابعاد محفظه و نوع اعمال میدان مغناطیسی و کسر حجمی نانوذرات به عنوان متغیرهای اصلی این بررسی مورد ارزیابی قرار گرفته اند. نتایج نشان داد می توان قدرت جریان، میزان انتقال حرارت و آنتروپی تولید شده را با اعمال میدان مغناطیسی کاهش داد. کاهش کمتر عدد ناسلت متوسط با غیر یکنواخت اعمال کردن میدان مغناطیسی حاصل می شود. افزایش ضریب جذب/تولید گرما به دلیل افزایش دمای مجموعه منجر به کاهش عدد ناسلت متوسط می شود که این اثر با افزایش عدد هارتمن، بیشتر می شود. افزودن نانوذرات به سیال پایه در حالتی که هدایت پدیده غالب است، موجب افزاش میزان انتقال حرارت می شود. انتقال حرارت تابعی از نسبت ضریب هدایت حرارتی و عدد رایلی بوده و افزایش این دو پارامتر اثرات جابجایی را افزایش می دهد و در این شرایط، اثر افزایش عدد هارتمن نمایان تر است. افزایش نسبت ابعاد محفظه منجر به کاهش عدد ناسلت متوسط و آنتروپی شده ولی اثر افزودن نانوذرات در این حالت بیشتر است. آنتروپی تولیدی با افزایش عدد هارتمن کاهش و با افزایش عدد رایلی و ضریب جذب/تولید گرما افزایش می یابد.

    کلید واژگان: انتقال حرارت دوگانه, نانوسیال ترکیبی, میدان مغناطیسی غیر یکنواخت, تغییر نسبت ابعاد محفظه, تولید آنتروپی, جذب, تولید حرارت یکنواخت, روش شبکه بولتزمن}
    Mohammad Nemati, Mohammad Sefid *

    In the present study, the entropy generated due to the conjugate heat transfer of the hybrid nanofluid inside the K-shaped chamber under magnetic field and uniform heat absorption/generation is investigated. The simulation was performed by writing computer code in Fortran language using the lattice Boltzmann method. Variations in Rayleigh number, volumetric fraction of nanoparticles, Hartmann number, heat absorption/generation coefficient, thermal conductivity ratio, chamber aspect ratio and type of magnetic field applied have been evaluated as the main variables of this study. The findings showed that the flow strength, heat transfer rate and entropy produced could be reduced by applying a magnetic field. A lower reduction of the average Nusselt number is achieved by non-uniform application of a magnetic field. Increasing the heat absorption/generation coefficient due to increasing the set temperature leads to decreasing the mean Nusselt number, which this influence increases with increasing the Hartmann number. Addition of nanoparticles to the base fluid in which the conduction of the phenomenon is predominant, increases the rate of heat transfer. Heat transfer is a function of the ratio of thermal conductivity and Rayleigh number that increasing these two parameters increases the convection effects, and in this case, the effect of increasing the Hartmann number is more pronounced. Increasing the chamber aspect ratio leads to a decline in the mean Nusselt number and entropy production, but the effect of adding nanoparticles is greater in this case. Entropy production decreases with increasing Hartmann number and increases with Rayleigh number and heat absorption/generation coefficient.

    Keywords: Conjugate Heat Transfer, Hybrid Nanofluid, Non Uniform Magnetic Field, Variation of Aspect Ratio, Entropy Production, Uniform Heat Absorption, Generation, Lattice Boltzmann Method}
  • Abhishek Sahu, Shubhankar Bhowmick *
    The present article reports the transient response of longitudinal fins having linear and non-linear temperature dependent thermal conductivity, convection coefficient and internal heat generation under two cases of base boundary condition, (i) step change in base temperature and (ii) step change in base heat flux. The fin tip is assumed to be adiabatic. Both, linear and non-linear, temperature dependency of thermo-physical properties is addressed in the mathematical formulation and the solution for the above cases is obtained using Lattice Boltzmann method (LBM) implemented in an in-house source code. LBM, being a dynamic method, simulates the macroscopic behavior by using a simple mesoscopic model and offers enormous advantages in terms of simple algorithm to handle even the most typical of boundary conditions that are easy and compact to program even in case of complicated geometries too. Although the transient response of longitudinal fins has been reported earlier, however power law variation of thermophysical properties for the above two base condition has not been reported till date. The present article first establishes the validity of LBM code with existing result and then extends the code for solving the transient response of the longitudinal fin under different sets of application-wise relevant conditions that have not been treated before. Results are reported for several combination of thermal parameter and are depicted in form of graphs.
    Keywords: Transient response, longitudinal fins, Lattice Boltzmann method, base heat flux, base temperature}
  • G. Lin, C. Geng, L. Zhang, F. Liu *
    The lattice Boltzmann models, especially the pseudopotential models, have been developed to investigate multicomponent multiphase fluids in presence of phase change process. However, the interparticle force between different components causes compressibility error in the non-phase-change component. This restricts the model capability in quantitative analysis of the physical foaming process, such as expansion rate and decay time. In the present study, a multicomponent multiphase pseudopotential phase change model (the MMPPCM) is improved by introducing an effective mass form of high-pressure-difference multicomponent model in the non-phase-change component. The improved model is compared with the MMPPCM based on simulations of the phase change process of static and moving fluids, as well as the physical foaming process. Density variation of non-phase-change component and its effect on flow field characteristics are analyzed during the phase change process. Simulation results of physical foaming process lead to about 10% ~ 20% reduction of the compressibility error for the improved model as compared with the results of MMPPCM. The improved model also enhances the computational stability of phase change simulation of the static droplets.
    Keywords: Lattice Boltzmann method, Multicomponent, Multiphase, Physical foaming, Compressibility error}
  • سیاوش هنری، سید احسان سیدی حسینی نیا*

    پدیده تولید ماسه سالانه هزینه ی گزافی را به ‏صنعت نفت تحمیل می کند و در این پژوهش، به شبیه سازی عددی این پدیده پرداخته شده است. هدف از این پژوهش، علاوه بر شناخت ‏کامل تر سازوکار ریزمقیاس تولید ماسه در توده های ماسه ای تحکیم نیافته (فاقد چسبندگی)، بررسی اثرگذاری دو عامل تنش ‏همه جانبه و فشار سیال است. از روش های اجزای مجزا برای مدل سازی توده و روش شبکه ی بولتزمن جهت شبیه سازی رفتار جریان سیال از میان محیط متخلخل خاکی استفاده شد. اندرکنش جریان سیال و محیط دانه ای با ‏استفاده از روش مرز متحرک مستغرق همبسته گردید. با توسعه یک برنامه رایانه ای، پدیده ی تولید ماسه تحت جریان شعاعی سیال در دو بعد شبیه‎سازی شد. نتایج نشان داد با افزایش مقدار تنش همه جانبه، مقدار ماسه ی تولیدی ‏و نرخ تولید ماسه افزایش می یابد. همچنین، پس از شروع تولید ماسه و افزایش تعداد سیکل های محاسباتی، بدلیل ‏تشکیل کمان ماسه ی پایدار در اطراف حفره ی مرکزی چاه، نرخ تولید ماسه در تمام نمونه ها کاهش می یابد. کمان های ماسه ای مستعد ‏فروپاشی بوده و پس از ناپایداری هریک از آن ها، کمان جدید با قطری بزرگ تر جایگزین کمان قبل می شود. با بررسی چگونگی تولید ماسه با مقادیر گوناگون افت فشار سیال، مشخص گردید علی رغم تاثیر اندک مقدار فشار سیال بر تولید ماسه در تنش های کم، در سطوح تنش بالا افزایش اختلاف فشار سیال سبب افزایش فرسایش ذرات (بیش از دو برابر، با افزایش 50 درصدی فشار ‏سیال) می شود. این ‏مطالعه نشان داد مدل همبسته ی اجزای مجزا - شبکه ی بولتزمن در حالت دوبعدی، می تواند سازوکار حاکم بر پدیده ی ‏تولید ماسه را بخوبی بیان کند.‏

    کلید واژگان: جریان شعاعی, تولید ماسه, روش اجزای مجزا, روش شبکه بولتزمن, کمان ماسه}
    Siavosh Hohari, Ehsan Seyedi Hosseininia *

    Sand production, which is a critical phenomenon in the oil and gas well walls, is numerically investigated in this research. The main goal is to study the particulate mechanism of sand ‎‎production in unbonded assemblies and examine the effects of stress level and pressure drawdown on the ‎model. Discrete Element Method (DEM) in combination with the Lattice-Boltzmann Method (LBM) is selected to simulate the fluid flow ‎through porous media. The Immersed Moving ‎Boundary method is used to couple the DEM and LBM methods. After developing a computer ‎program, a 2D model of sand production is simulated under radial flow. The simulation results show that as the confining stress ‎increases, the number of produced particles and sand production rate increases. After the initiation of sand production, the sanding rate decreases in all models ‎due to the formation of sand arches around the central hole. These sand arches are weak and ‎usually unstable, and after the collapse of every arch, the new arch is formed and replaces the ‎previous one with a larger diameter. The results also show that the pressure drawdown has a negligible effect on sand production at low stress levels. However, at high stress levels, the increase of pressure drawdown significantly increases the number of produced particles (a 50% increase in pressure led to more than twice produced particles). It is also found that the 2D coupled DEM-LBM is a ‎promising tool to predict the mechanism that governs sand production and its main influencing ‎factors‎.

    Keywords: discrete element method, Lattice-Boltzmann Method, Radial flow, Sand arch, Sand production}
  • احسان مهرابی گوهری*، محمد سفید، علیرضا ملوزه، محسن مظفری شمسی
    در این تحقیق به کمک روش ترکیبی شبکه بولتزمن و نمایه هموار بستر سیالی مایع-جامد با سیال غیرنیوتنی قانون توانی مدل سازی شده است. هندسه بستر کانال استوانه ای حاوی ذرات کروی با قطرهای یکسان می باشد. مدل هیدرودینامیکی سیال بر مبنای روش شبکه بولتزمن باتناگار-گروس-کروک بوده و جهت برقراری شرط عدم لغزش در فصل مشترک جامد - مایع از روش نمایه هموار استفاده شده است. جهت بررسی قابلیت روش مطرح شده در مدل سازی بسترهای سیالی غیرنیوتنی، یک نمونه بستر سیالی با 416 ذره به صورت عددی مدل شده و نتایج مدل سازی برای یک سیال نیوتنی (آب) و دو سیال غیرنیوتنی قانون توانی به عنوان سیال عامل بستر بررسی و با نتایج تجربی ارایه شده توسط محققان مقایسه گردیده است. ارزیابی ها برای حداقل سرعت سیالیت سیالات غیرنیوتنی با رابطه تجربی یو انجام شده، همچنین برای تخلخل و ارتفاع بستر، نتایج مدل سازی سیال نیوتنی با رابطه تجربی ریچاردسون-زاکی و سیالات غیرنیوتنی با رابطه میشاس و آلبرچیوا مقایسه شده است، که با توجه به میزان خطای میانگین روابط تجربی استفاده شده در هر مورد توافق خوبی میان نتایج عددی و تجربی مشاهده شده است.
    کلید واژگان: بستر سیالی مایع-جامد, شبکه بولتزمن, نمایه هموار, سیال غیرنیوتنی قانون توانی}
    Ehsan Mehrabi Gohari *, Mhammad Sefid, Alireza Maloozeh, Mohsen Mozafari Shamsi
    In the present study, a combined Lattice Boltzmann method-smoothed profile method is used for simulation of a liquid-solid fluidized bed with non-Newtonian Power-law fluids. The geometry is contained circular monodisperse particles in a cylindrical channel. The hydrodynamic model of the flow is based on the Bhatnagar–Gross–Krook Lattice Boltzmann method and the smoothed profile method is adopted to enforce the no-slip boundary condition at the liquid-solid interface. A numerical instance of a fluidized bed involving 416 particles is presented to demonstrate the capability of the combined scheme. The results for both Newtonian and non-Newtonian liquids have compared with the experimental results of other researchers. Porosity and bed height results of Newtonian fluid (water) compared with the Richardson-Zaki equation which was showed good correspondence. Non-Newtonian fluid results compared with the Yu equation for estimating minimum fluidization velocity and the Machač-Ulbrichová equation for porosity and bed height, yet by considering uncertainty in non-Newtonian equations results of comparisons are acceptable.
    Keywords: Liquid-solid fluidized bed, lattice Boltzmann method, Smoothed Profile Method, Non-Newtonian Power-law fluid}
  • در کار حاضر انتقال حرارت سیال غیر نیوتنی درون محفظه دو بعدی با نسبت ابعاد متغیر در حضور میدان مغناطیسی و با وجود جذب تولید حرارت یکنواخت به روش شبکه بولتزمن مورد بررسی قرار گرفت. میدان مغناطیسی به دو صورت یکنواخت و پریودیک عمود بر گرانش به محفظه اعمال می شود. دیواره عمودی محفظه و دیواره های منحنی به ترتیب در دمای ثابت گرم و سرد قرار دارند. کار حاضربا نتایج مطالعات قبلی و معتبر اعتبار سنجی شد و از دقت نتایج به دست آمده اطمینان حاصل شد. اثر عدد هارتمن، شاخص توانی سیال غیر نیوتنی، ضریب جذب تولید حرارت، نسبت ابعاد محفظه و نوع اعمال میدان مغناطیسی بر مشخصات جریان و ویژگی های انتقال حرارت بررسی شد. نتایج نشان می دهد با افزایش شاخص توانی، عدد هارتمن و ضریب جذب تولید حرارت عدد ناسلت متوسط کاهش می یابد. با افزایش ضریب جذب تولید حرارت، نسبت ابعاد و کاهش شاخص توانی اثر میدان مغناطیسی بیشتر می شود. اعمال میدان مغناطیسی به صورت پریودیک در مقایسه با حالت یکنواخت منجر به افزایش عدد ناسلت متوسط و قدرت جریان می شود که این اثر برای سیال نازک شونده بیشترین و برای سیال ضخیم شونده ناچیز است. افزایش همزمان عدد هارتمن و ضریب جذب/تولید حرارت، عدد ناسلت متوسط کمتری را در پی دارد. این مطالعه می تواند در طراحی بهینه تجهیزات انتقال حرارت که در فضاهای ناخواسته قرار گرفته اند از جمله خنک سازی تجهیزات الکترونیکی، مفید باشد.

    Mohammad Nemati, Mohammad Sefid *, Ahmadreza Rahmati

    In the numerical present study, MHD natural convection heat transfer of non-Newtonian power-law fluid in a two-dimensional enclosure with variable aspect ratio in the presence of heat absorption/generation is investigated by using the lattice Boltzmann method (LBM). The magnetic field is applied to the enclosure in uniform and periodic forms. The vertical wall and curved walls of the enclosure are at constant hot and cold temperature, respectively. The present work is validated with previous studies and the accuracy of the results is ensured. The effect of the Hartmann number, non-Newtonian power-law index, heat absorption/generation coefficient, aspect ratio of the enclosure and the type of magnetic field applied on the nature of flow and heat transfer are studied. The results show that increasing the non-Newtonian power-law index, Hartmann number and the heat absorption/generation coefficient reduce the Nusselt number. By increasing the heat generation/absorption coefficient, aspect ratio and decreasing the non-Newtonian power-law index, the effect of the magnetic field increases. Applying a magnetic field periodically compared to a uniform form leads to an increase of in Nusselt number and flow strength that this effect is greatest for shear thinning fluid and negligible for shear thickening fluid. Increase of Hartmann number and heat absorption/generation coefficient simultaneous leads to further decrease of average Nusselt number. This research can be helpful in the optimal design of heat transfer equipment.

    Keywords: Heat absorption, generation, Lattice Boltzmann method, Natural convection heat transfer, Non-Newtonian fluid, Periodic magnetic field, variable aspect ratio}
  • Rasul Mohebbi, Abbas Abbaszade, Mahsa Varzandeh, Yuan Ma *

    This paper presents a series of numerical simulations of nanofluid natural convection inside an F-shaped enclosure equipped by heat source. A hybrid nanofluid consisting of Ag and MgO nanoparticles and water as base fluid was used. Lattice Boltzmann method (LBM) was applied and the effects of Raleigh number (103 ≤ Ra ≤ 106), solid volume fraction of nanoparticle (0 ≤ ϕ ≤ 0.02), and heat source location (0 ≤ S ≤ 0.9) on the flow field, distribution of temperature and heat transfer performance were analyzed according to streamlines, isotherms, and profiles of average Nusselt numbers. The results indicated that the average Nusselt number enhances by increasing the ϕ, although the addition of nanoparticles cannot change the flow pattern and the thermal field significantly. At low Ra, the effect of Ra on average Nu is weak. However, for high Ra, the heat transfer increases significantly by increasing the Ra. The position of heat source also affects the average Nu. The S = 0.6 is the best position of the hot obstacle for enhancing the heat transfer and S = 0.9 is the worst choice. This trend cannot be affected by Ra and ϕ.

    Keywords: Nanofluid, Hot obstacle, Lattice Boltzmann method, Natural convection, F shaped cavity}
  • Y. Huang, Y. Tian, W. Ye, W. Li, J. Lei, Y. Zhang *
    The structured surface-enhanced pool boiling process and associated heat transfer enhancement characteristics are numerically investigated by using the pseudopotential multiphase flow lattice Boltzmann (LB) model coupled finite difference method (FDM). In the current study, the effects of different microstructure geometries(square structures, triangular serrated structures, triangular-raised structures) and varying spacing in triangular-raised structures (d = 0, 22, 44, 66, 88, 110 l.u. (lattice units)) on boiling heat transfer (BHT) characteristics and bubble dynamics behavior are studied in detail. The results showed that microstructure can accelerate bubble nucleation. Among the three microstructures, the heat transfer performance of triangular-raised structures was significantly better than that of square and triangular serrated structures in the nucleate boiling (Ja number is 0.124-0.145). The oscillation and deformation of bubbles led to the lateral migration of bubbles, the continuous nucleation of small bubbles. The phenomenon of re-wetting of heating surface occurred in the process of bubble migration, necking, deformation and detachment was found, which enhances heat transfer in nucleate boiling. At the same time, the growth, oscillation and detachment of bubbles also perturb the liquid and enhance the natural convection around the bubbles.Therefore the main BHT mechanism of nucleate boiling on the three kinds of structured surface is the combined action of transient heat conduction and micro-convection. The variation of the spacing between microstructures showed an important effect on the BHT performance of the heating surface and the generation of activated nucleation sites in the nucleate boiling. Triangular-raised structures can enhance transient heat conduction and micro-convection, with the strongest enhancement effect at d = 66 l.u when the Ja number is 0.124.
    Keywords: Boiling, Structured surface, Bubble dynamics, Lattice Boltzmann method}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال