به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "ایستگاه پل خان" در نشریات گروه "آب و خاک"

تکرار جستجوی کلیدواژه «ایستگاه پل خان» در نشریات گروه «کشاورزی»
جستجوی ایستگاه پل خان در مقالات مجلات علمی
  • محمدرضا نیک منش
    آگاهی از اطلاعات دبی جریان در رودخانه ها برای مدیریت منابع آب، پیش بینی سیل، طراحی مهندسی و مدیریت زیست محیطی ضروری می باشد. مدل های ارائه شده همچون بارش-رواناب و سری های زمانی به منظور پیش بینی میزان آبدهی رودخانه ها به دلیل عدم دقت و پیچیدگی عوامل موثر در آبدهی در بسیاری از موارد با مقادیر مشاهده شده تطابق ندارد. موجک یکی از روش هایی است که در سالهای اخیر در زمینه هیدرولوژی مورد توجه قرار گرفته است. همچنین موجک روشی بسیار موثر در زمینه آنالیز سیگنال ها و سری های زمانی می باشد. این مقاله به ارائه یک مدل هوشمند تلفیقی مبتنی بر شبکه عصبی مصنوعی و تبدیلات موجک می پردازد که برای شبیه سازی آبدهی متوسط ماهانه در رودخانه کر و ایستگاه پل خان مورد استفاده قرار می گیرد. عملکرد مدل های پیش بینی به کمک معیارهای جذر میانگین مربع خطا و ضریب تعیین مورد ارزیابی قرار گرفتند. نتایج نشان دادند که مدل تلفیقی شبکه عصبی مصنوعی و تبدیل موجک با 2 درجه تجزیه سازی برای مناسب ترین ساختار، بهترین نتایج را ارائه می کند. در این ساختار، آبدهی خروجی برای جریان در ماه بعد بر حسب آبدهی 4، 3، 2، 1 ماه قبل و ماه جاری محاسبه شده و مقادیر و به ترتیب برابر با 14 /7 مترمکعب بر ثانیه و 941 /0 به دست آمد.
    کلید واژگان: آبدهی, شبکه عصبی مصنوعی, موجک, رودخانه کر, ایستگاه پل خان
    Mohammad Reza Nikmanesh
    Awareness of flow rate data in rivers is essential for management of water resources, flood forecasting, engineering design and environmental management. The presented models for flow rate predicting in rivers, such as rainfall-runoff and time series are not consistent with the observed data in many cases due to the lack of accuracy and complexity of the factors affecting the discharge. Wavelet is one of the methods that has been considered in recent years in the field of hydrology. Wavelet method is also very effective in the field of signals analysis and time series. This paper presents a hybrid intelligent model based on artificial neural network and wavelet transforms is used to simulate monthly average discharge in Kor River and Pol-e-Khan Station. Performance of prediction models were evaluated using the criteria of Root Mean Square Error (RMSE) and determination coefficient. The results showed that the hybrid model of artificial neural network and wavelet transform with 2 degrees of decomposition offers the best results for the most suitable structure. In this structure, the output discharge for flow rate in the following month is calculated based on discharge in 4, 3, 2 and 1 month ago and current month and the values of RMSE and obtained 7.14 and 0.941 respectively.
    Keywords: discharge, artificial neural network, wavelet, Kor River, Pol, e, Khan Station
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال