به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "شبکه عصبی gmdh" در نشریات گروه "آب و خاک"

تکرار جستجوی کلیدواژه «شبکه عصبی gmdh» در نشریات گروه «کشاورزی»
جستجوی شبکه عصبی gmdh در مقالات مجلات علمی
  • مسعود کرباسی*
    سابقه و هدف
    تخمین دقیق مقدار تبخیر-تعرق مرجع برای انجام بسیاری از تحقیقات ضروری و از مهم ترین مسائل در طرح های آبیاری و زهکشی و منابع آب به شمار می رود. یکی از این مسائل که می تواند در راستای اهداف ذکرشده اعمال شود، پیش بینی تبخیر-تعرق مرجع برای آینده است تا بتوان با برنامه ریزی های مناسب، امکان استفاده بهتر از منابع موجود را فراهم نمود (7). در سال های اخیر استفاده از روش های هوش مصنوعی و مدل هیبریدی بر پایه موجک در پیش بینی پارامترهای هیدرولوژیکی بسیار متداول گشته است (12). هدف تحقیق حاضر استفاده از دو مدل GMDH و موجک-GMDH در پیش بینی تبخیر-تعرق مرجع روزانه در ایستگاه سینوپتیک اهواز است.
    مواد و روش ها
    . بدین منظور یک دوره آماری 10 ساله (2000 الی 2009) که 7 سال (2000-2006) آن برای آموزش و 3 سال (2007-2009) جهت آزمون و صحت سنجی مدل های پیشنهادی در نظر گرفته شد. برای ایجاد سری زمانی تبخیر-تعرق مرجع روزانه در دوره مورد نظر از معادله استاندارد پنمن-مانتیث فائو 56 استفاده گردید. 9 ترکیب مختلف از داده های ورودی (تاخیرهای مختلف) و انواع موجک های مادر (13 موجک مادر) مورد ارزیابی قرار گرفت. در مجموع 126 مدل که 117 عدد از آن ها مربوط به مدل هیبریدی موجک-GMDH و 9 مدل شبکه عصبی GMDH بود، اجرا گردید. برای انتخاب بهترین مدل از معیارهای آماری نظیر ضریب تبیین (R2)، ریشه میانگین مربعات خطا (RMSE) و درصد متوسط خطا (MARE) استفاده شد.
    یافته ها
    نتایج نشان داد که مدل هیبریدی موجک-GMDH (با RMSE 31/0 میلی متر بر روز) در مقایسه با مدل شبکه عصبی GMDH (با RMSE 22/1 میلی متر بر روز) دارای توانایی و دقت بالاتری در پیش بینی تبخیر-تعرق مرجع روزانه است. همچنین نتایج نشان داد که استفاده از تاخیرهای زمانی بیشتر از چهار روز تاثیر چندانی بر دقت مدل ها ندارد و در برخی موارد می تواند موجب کاهش دقت نیز گردد. نتایج تحقیق حاضر با تحقیقات مشابه که از تبدیل موجک برای پیش پردازش داده ها استفاده نموده اند، مطابقت دارد (1، 4، 5 و 12). بررسی انواع موجک های مادر نیز نشان داد که استفاده از موجک میر به علت پیچیدگی بیشتر باعث افزایش دقت مدل ها می گردد. یافته فوق با نتایج رجایی و ابراهیمی(2014)، شعیب و همکاران(2015) و طوفانی و همکاران (2012) مطابقت دارد(13، 15 و 17).
    نتیجه گیری
    نتایج این تحقیق نشان داد که مدل موجک- GMDH (درصد متوسط خطای مطلق 53/5) در پیش بینی تبخبر-تعرق مرجع برای یک روز بعد برتری چشم گیری بر مدل GMDH ( درصد متوسط خطای 11/22) دارد. از نتایج تحقیق حاضر می توان در برنامه ریزی آبیاری منطقه موردمطالعه استفاده نمود. در پایان پیشنهاد می گردد، مدل های پیشنهادی در اقلیم های مختلف ایران نیز مورد بررسی و ارزیابی قرار بگیرند.
    کلید واژگان: تبخیر, تعرق مرجع, پیش بینی سری زمانی, تبدیل موجک, شبکه عصبی GMDH, ایستگاه سینوپتیک اهواز
    Masoud Karbasi *
    Background And Objectives
    Reference evapotranspiration is one of the most effective components of agricultural water use and management of water resources. Determination of the water requirements of various plants during the growing season is necessary in order to prevent water waste and proper planning (7). In recent years the use of artificial intelligence technics and hybrid model in forecasting of hydrological parameters has become very popular (12). The objective of this study is to evaluate GMDH neural network and wavelet-GMDH hybrid models in forecasting of daily reference evapotranspiration at Ahvaz synoptic station.
    Materials And Methods
    For this purpose, 10-year period (2000 to 2009), 7 years (2000-2006) for training and 3 years (2007-2009) to test different models were considered. Reference crop evapotranspiration time series generated using standard penman-monteith equation. Different combinations of inputs (different delays) and various mother wavelets were examined. To test different models were considered different combinations of inputs (9 different delays); and different mother wavelets (13 mother wavelets). A total of 126 models 117 of them related to hybrid models wavelet- GMDH and 9 for GMDH neural network were carried out. To choose the best model, statistical criteria such as coefficient of determination (R2), root mean square error (RMSE) and the mean percentage error (MARE) was used.
    Results
    The results showed that wavelet-GMDH hybrid model (RMSE = 0.31 mm / day) compared with GMDH neural network (RMSE = 1.22 mm / day) has higher accuracy in forecasting daily reference evapotranspiration. The results showed that use of delays longer than four days have little effect on the accuracy of models and in some cases can result in reduced accuracy. The results of similar studies that have used wavelet transform to preprocessing data are in correspondence with our findings (1, 4, 5 and 12). Results of GMDH neural network showed that number of delays did not affect the accuracy of model. This study evaluates the accuracy of the wavelet-artificial neural network hybrid model for different mother wavelets. Results showed that Meyer mother wavelet due to its complexity and its shape improved the accuracy of models. These findings correspond with the findings of Rajaee and Ebrahimi(2014), Shoaib et al(2015) and Toofani et al (2012) (13, 15 and 17).
    Conclusion
    Results of this study showed that, at the forecasting of one day ahead reference evapotranspiration Wavelet-GMDH model (MAPE=5.53%) has significant superiority to GMDH model (MAPE=22.11%). The results of this study can be used in the planning of irrigation water in this area. At the end it is recommended that proposed models has been evaluated in different climate conditions of Iran.
    Keywords: evapotranspiration, Forecasting of time series, Wavelet transform, GMDH neural network, Ahvaz synoptic station
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال