به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « sill position » در نشریات گروه « آب و خاک »

تکرار جستجوی کلیدواژه «sill position» در نشریات گروه «کشاورزی»
  • رسول دانشفراز*، رضا نوروزی، حمیدرضا عباس زاده

    هدف از تحقیق حاضر بررسی آزمایشگاهی تاثیر میزان بازشدگی دریچه و تاثیر وجود آستانه های هم عرض و غیر هم عرض بر ضریب دبی می باشد. بدین منظور آستانه های مستطیلی با عرض های مختلف و در موقعیت های زیر دریچه، مماس در بالادست و پایین دست دریچه مورد بررسی قرار گرفتند. در حالت بدون آستانه، ضریب دبی با افزایش بازشدگی دریچه کاهش می یابد. به طور میانگین ضریب دبی بازشدگی 1 سانتی متر در مقایسه با بازشدگی های 2، 4 و 5 سانتی متر به ترتیب 7.75%، 16.51% و 18.35% بیشتر می باشد. با افزایش عرض آستانه در تمامی شرایط قرارگیری آستانه، ضریب دبی در مقایسه با حالت بدون آستانه افزایش می یابد. نتایج نشان داد که وجود آستانه با حداقل عرض در مقایسه با حالت بدون آستانه در یک بازشدگی مشخص، منجر به افزایش ضریب دبی می گردد. ضریب دبی آستانه هم عرض در موقعیت بالادست دریچه در مقایسه با حالت بدون آستانه در بازشدگی یکسان 1 سانتی متر 10.34% بیشتر بوده و این میزان برای بازشدگی یکسان 2 سانتی متر 17.86% می باشند. نتایج حاکی از آن است که در حالت با آستانه های غیر هم عرض، با افزایش میزان بازشدگی دریچه، ضریب دبی در مقایسه با با بازشدگی های کم تر کاهش می یابد. بررسی نتایج نشان داد که ضریب دبی مربوط به آستانه در موقعیت مماس بر دریچه در بالادست آن بیشتر از موقعیت مماس بر دریچه در پایین دست و موقعیت قرارگیری آستانه در زیر دریچه است. روابط چند جمله ای غیرخطی رگرسیونی برای پیش بینی ضریب دبی در حالت با آستانه و بدون آستانه ارایه گردید. نتایج شاخص های آماری RMSE و KGE برای حالت با آستانه به ترتیب 0.014 و 0.951 و برای حالت بدون آستانه 0.0067 و 0.987 می باشند.

    کلید واژگان: آستانه هم عرض و غیر هم عرض با کانال, بازشدگی دریچه, دریچه کشویی, ضریب دبی, موقعیت آستانه}
    Rasoul Daneshfaraz *, Reza Norouzi, Hamidreza Abbaszadeh
    Background and Objectives

    The gate is one of the hydraulic structures in which water passes through it. The most common types of these structures are sluice gates that move up and down in a vertical plane to adjust the opening. Estimating the discharge coefficient and consequently determining the flow rate under the gate is one of the basic and important issues in hydraulic engineering. Daneshfaraz et al. (2016) numerically investigated the effect of sluice gate edge shapes on flow characteristics. Their results showed that the flow contraction coefficient for sharp edges and round-edge gates decreases when the ratio of gate opening to upstream specific energy is less than 0.4 and increases for ratios greater than 0.4. The results of the research (Alhamid 1999) showed that the discharge coefficient increased in the sill mode compared to the no-sill mode. Salmasi and Abraham (2020) conducted an experimental study of sluice gate discharge coefficient with polygonal and non-polygonal sills. In the present study, general formula for calculating the flow rate under the sluice gate for the suppressed sill state has been developed for the non-suppressed sill and presented for the first time. The discharge coefficient was investigated in no-sill state at different openings and with the suppressed and non-suppressed sills in two openings in different positions relative to the sluice gate.

    Methodology

    In this study, a laboratory flume with a rectangular cross-section of 5 meters long, 0.3 meters wide and 0.5 meters high with walls and floors made of transparent Plexiglas has been used for experiments. The experiments were performed in two states without sill at different gate openings and with sill at two openings. In this research, experiments using polyethylene sills with a thickness of 5 cm and a height of 3 cm in different widths of 2.5, 5, 7.5, 10, 15, 20, 25 and 30 cm was done at different positions relative to sluice gate. In total, 377 experiments were performed in the flow rate range of 150 to 850 L min-1

    Findings

    In without sill state, discharge coefficient is inversely related to the gate opening. Applying the sill below and tangentially to the gate leads to an increase in discharge coefficient. Also, with increasing the ratio of the upstream flow depth to the sill width, the discharge coefficient has an increasing trend. By comparing the discharge coefficient in different situations, the discharge coefficient in the upstream tangential position is higher than the sill in the below position of the sluice gate. The reason is related to the position of the sill. For the downward tangent model compared to the sill below the gate, the discharge coefficient is higher, and compared to the upward tangent model is lower. In the upstream tangential model, the amount of water depth upstream of the gate is lower than the below and downward model, and the highest amount is related to the sill state below the gate. At the same opening in the without sill and suppressed sill state, the maximum discharge coefficient is related to the sill state. In the stage-discharge diagram at constant discharge, the water head upstream of the sluice gate is lower in all suppressed sill positions than the no-sill state. In this study, equations were presented for predicting discharge coefficient in with and without sill state.

    Conclusion

    The results showed that in no-sill state and in different gate openings, the discharge coefficient is inversely related to the gate opening. In the present study, the general equation of discharge calculation was developed for the non-suppressed sill and the calculations were performed based on the new relation presented for the case with the non-suppressed sill. This equation can be used for symmetric and asymmetric sills. Comparison of the results obtained for the discharge coefficient, with sill, and without sill condition indicates the better performance of the existence of a sill in all positions in terms of increasing the discharge coefficient. In addition, the comparison of the results of discharge coefficients between the suppressed sill and no-sill state in the opening of 1 and 2 cm indicates an increase of the discharge coefficient in the suppressed sill state. In this condition, the discharge coefficient of the gate opening of 1 cm is higher than 2 cm. However, the discharge coefficient is higher in both opening modes than in the without sill mode.

    Keywords: Discharge coefficient, Gate opening, Non-suppressed sill, Sill Position, Sluice gate, Suppressed sill}
  • Sajad Kiani, Manoochehr Fathi-Moghadam*, Reza Behrouzi-Rad, Layla Davoodi
    Stilling basins are the most common structures for energy dissipation downstream of spillways. A properly designed stilling basin can ensure 60–70% dissipation of energy in the basin. The purpose of this study is to evaluate the performance of perforated end sill and effect of the sill on characteristics of hydraulic jump. The perforated sills with different heights and four ratios of opening 12, 25, 50 and 75% were tested for three tail water depths. Results of experiments confirmed significant effect of the perforated sill on dissipation of energy, reduction of the basin length and reducing dependence of jump location on tail water depth. Based on experimental observation, in a constant Froude number, decreasing of the tail water depth causes the hydraulic jump to move forward toward the end of the basin. In this case, to control the jump and to avoid the hydraulic jump being swept out of the basin, sill distance is decreased. Also, observation showed the sill height needs to be increased as inflow Froude number increases and tail water decreases. In the other words, relative sill height increases up to 30% as tail water depth ratio decreases from 1 to 0.8. Furthermore, the results showed that sills with the 50% opening in comparison with other openings have most effective in energy dissipation and reduction of the hydraulic jump length. The comparison of stilling basin with perforated sill and free jump indicated that the sill with perforation ratio of 50% dissipated 60–90% of water energy in inflow Froude number range of 4.5-12. Moreover, once Froude number increases from 4.5 to 12, stilling basin length increases about 19% for this perforated sill in the tail water depth ratio of 1.
    Keywords: Sill height, Energy dissipation, Length of basin, Tail water, Sill position}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال