جستجوی مقالات مرتبط با کلیدواژه "carcass parts" در نشریات گروه "علوم دام"
تکرار جستجوی کلیدواژه «carcass parts» در نشریات گروه «کشاورزی»-
به منظور مطالعه تاثیر مخمر اتولیزشده و تراکم بالا بر عملکرد و جمعیت میکروبی روده کور جوجههای گوشتی، آزمایشی به صورت طرح کاملا تصادفی با آرایش فاکتوریل 4×2 اجرا شد. سطوح مختلف مخمر اتولیزشده (0، 1/0، 2/0، 3/0 درصد) و تراکم (10 و 16 قطعه پرنده در مترمربع) در سه مرحله آغازین، رشد و پایانی با استفاده از 520 قطعه جوجه گوشتی سویه راس 308 مورد بررسی قرار گرفتند. استفاده از مخمر اتولیزشده باعث کاهش معنیدار مصرف خوراک در دوره پایانی آزمایش شد. پرورش جوجهها در تراکم بالا، باعث کاهش مصرف خوراک و افزایش وزن در مقایسه با شرایط تراکم نرمال، در دوره پایانی آزمایش شد. ضریب تبدیل خوراک در پرندگان تغذیه شده با مخمر اتولیزشده به طور معنیداری در مقایسه با شاهد در دوره آغازین بهبود یافت. صفات مرتبط با عملکرد و فراسنجههای فیزیولوژیکی جوجههای گوشتی، تحت تاثیر اثر متقابل مخمر و تراکم قرار نگرفتند. همچنین، پرندگان پرورش یافته در تراکم بالا جمعیت لاکتوباسیل روده کور کمتری در مقایسه با پرندگان پرورش یافته در تراکم نرمال نشان دادند. سطوح 2/0 و 3/0 درصد مخمر اتولیزشده باعث کاهش معنیدار جمعیت ایکلای روده کور در مقایسه با شاهد شد. نتایج نشان داد که اگرچه استفاده از مخمر اتولیزشده در شرایط پرورشی متراکم نتوانست فراسنجههای عملکردی و فیزیولوژیکی حیوان را تحت تاثیر قرار دهد، اما استفاده از سطوح 2/0 و 3/0 درصد مخمر اتولیزشده در جیره باعث بهبود ضریب تبدیل خوراک و کاهش جمعیت ایکلای روده کور شد.
کلید واژگان: تراکم, اجزای لاشه, روده کور, فراسنجههای فیزیولوژیکی, مصرف خوراکIntroductionExposure of poultry to various environmental stressors, such as vaccination, heat stress, high stocking density, and direct contact with excrement in the litter, can stimulate the stress response, disrupt the body's immunity, and external pathogenic factors introduce to a healthy animal. Therefore, they affect natural growth and production. High stocking density can be stressful and have harmful effects on the performance and safety of broiler chickens. Among the environmental factors, stocking density is an important factor in the production of broiler chickens due to its effects on health, well-being, and performance. Stocking density is defined based on the number of birds per surface unit or the amount of surface for each bird and based on the kilogram of poultry weight per surface unit. Yeasts and yeast products can act as an alternative to antibiotics to promote growth and disease resistance in poultry. Autolyzed yeast consists of ruptured or lysed cells and includes both intracellular and cell wall parts. Autolyzed yeast is usually concentrated or dried by liquid fermentation of Saccharomyces cerevisiae, and after autolysis or hydrolysis catalyzed by exogenous enzymes. In broiler chickens, the effects of prebiotics are partially dependent on the blocking of pathogen-adherent receptor sites, regulation of the immune system, production of antimicrobial molecules by the intestinal microbial community, and changes in the intestinal microbial structure.
Materials and MethodsThis experiment was carried for 37 days in 3 periods including starter (1-10 days old), grower (11-24 days old) and finisher (37-25 days old) using 520 one-day-old broiler chickens of Ross 308 commercial strain in a completely randomized design based on factorial arrangement 4 x 2 with 5 replicates. Experimental treatments included different levels of autolyzed yeast (0, 0.1, 0.2 and 0.3%) and 2 density levels (10 (normal density) and 16 (high density) bird per square meter). The basal diet used was adjusted based on the requirements of broiler chickens (Ross, 2019). Food and water were provided ad-libitum. Feed intake (FI) and body weight gain (BWG) of birds were recorded and feed conversion ratio (FCR) was calculated. On the 37th day of the experiment, two birds from each replicate were randomly selected and the weight of different parts of the carcass including the weight of gastrointestinal tract, breast, thigh, gizzard, liver, pancreas, and spleen (as a percentage of live body weight) were recorded. Also, at this time, caecal digesta (1 g) from each bird were aseptically transferred into 9 ml of sterile saline solution and serially diluted. Lactobacilli, Coliforms, and E.Coli were grown on Rogosa–Sharpe agar, MacConkey Agar, and Eosin Methylene Blue Agar, respectively. Plates for Lactobacillus were incubated anaerobically for 48 h at 37 °C. Microbial populations for E. coli and Coliforms were counted after aerobic incubation at 37°C for 24 hours. All samples were plated in duplicate. The obtained data were statistically analyzed using SAS statistical software, GLM procedure. Also, comparison of averages was done by Duncan's multi-range test at 5% probability level.
Results and DiscussionThe results of the experiment showed that feed intake, body weight gain and feed conversion ratio were not affected by the interaction of yeast and density (P>0.05). However, the use of autolyzed yeast significantly reduced the feed intake in the finisher period as well as the whole period of the experiment (P<0.05). Also, birds reared in high density showed significantly less feed intake and weight gain compared to birds reared in normal density in the finisher period and the whole period of the experiment (P<0.05). The feed conversion ratio in birds fed with autolyzed yeast improved significantly compared to the control treatment in the starter period as well as the entire experimental period (P<0.05). Carcass components and cecum microbial population of broilers were not affected by the interaction of yeast and density (P>0.05). Also, birds reared in high density showed less Lactobacillus population in cecum compared to birds reared in normal density (P<0.05). Using levels of 0.2 and 0.3% of autolyzed yeast in the diet caused a significant decrease in the cecum E. coli population compared to the control treatment.
ConclusionThe results of the present study showed that although the use of autolyzed yeast in high density conditions could not affect the functional and physiological parameters of the animal, the use of autolyzed yeast improved the feed conversion ratio and reduced the population of E. coli of cecum.
Keywords: Carcass Parts, Cecum, Feed Intake, Physiological Parameters, Stock Density -
A dose-response experiment with seven dietary energy levels (2500, 2650, 2800, 2950, 3100, 3250 and 3400 kcal of MEn/Kg) was implemented to study the effects of dietary energy level on growth performance and carcass characteristics of Japanese quails from 2 to 5 weeks of age. Three hundred and thirty-six 14-day-old Japanese quails were randomly divided into 7 dietary treatments, containing six replicates with eight males and females per each, and the birds were grown up to 5 weeks of age. At 35 d of age, weight gain, feed intake and feed conversion ratio (FCR) of quails from each pen were measured or calculated, and one quail (male one) that had similar body weight to the average of the replication weight was selected and slaughtered to evaluate the yields of carcass parts. The results showed that with an increase in dietary MEn levels feed intake, crude protein intake, FCR and crude protein intake:gain (g/g) of quails decreased significantly (P < 0.05). The highest and the lowest dietary MEn levels resulted in a decrease in body weight gain and metabolizable energy intake (kcal/b). The highest rate of weight gain belonged to moderate dietary energy levels (2800 and 2950 kcal/kg). The results of the experiment revealed that metabolizable energy intake to weight gain, as well as some carcass characteristics such as edible carcass, thighs and breast percentages and giblets (liver, heart and gizzard percentages), were not affected by different dietary energy levels. With increasing dietary energy from 2500 to 2950 kcal MEn/Kg, the weight gain of quail increased and above 2950 kcal/Kg decreased significantly (p=0.0058). Based on broken line regression analysis, between two and four weeks of age, the metabolizable energy requirement of growing quails was 2831 and 2799 Kcal/kg for optimal weight gain and FCR, respectively, when protein level in the diet was 24 percent.Keywords: Quail, Performance, Carcass Parts, Requirement, Dietary Energy Level
-
آگاهی از قطعات مختلف لاشه و وزن دنبه در حیوان زنده، می تواند به انتخاب و تعیین سن بهینه کشتار کمک کند. بدین منظور اندازه گیری وزن زنده، ابعاد فنوتیپی دنبه و همچنین اندازه گیری چربی پشتی و مساحت عضله چشمی با اولتراسوند در 38 راس بره نر مغانی انجام گرفت. سپس همه ی گوسفندان کشتار شده و پس از حذف کلیه اندام های داخلی بدن، لاشه ها به مدت 24 ساعت در دمای 4 درجه سانتیگراد در سردخانه نگه داری شدند. پس از این مدت هرلاشه به دو نیم لاشه تقسیم شده و سمت راست هرلاشه به قطعات ران، سردست، قلوه گاه، راسته و گردن تقسیم و وزن هر قطعه ثبت شد. تجزیه آماری داده ها نشان داد که وزن بدن به تنهایی 85/0، 43/0، 56/0، 70/0، 52/0 و 50/0 از تغییرات مربوط به وزن نیم لاشه، گردن، سردست، ران، راسته و قلوه گاه را به ترتیب، توضیح می دهد. مقادیر انحراف استاندارد باقیمانده در معادلات بدست آمده نیز بسیار پایین و دارای دامنه ای از 10/0 تا 50/0 بود. افزودن متغیرهای اندازه گیری شده به وسیله سونوگرافی در قالب مدل های رگرسیون چندگانه ضرایب تشخیص همه معادلات را، به جز معادله مربوط به پیش بینی وزن گردن افزایش داد و به ترتیب آن ها را به 86/0، 43/0، 59/0، 73/0، 58/0 و 57/0 رسانید. پیش بینی وزن دنبه با بکار بردن متغیرهای محیط، عرض و قطر دنبه به روش گام به گام ضریب تشخیص مدل را 78/0 تعیین کرد در حالی که استفاده از مدل کامل R2 را به 81/0 رسانید. بر اساس یافته های این پژوهش، پیش بینی قطعات لاشه و وزن دنبه با استفاده از برخی اندازه گیری های فنوتیپی و سونوگرافی، با صحت بالا امکان پذیر می باشد.
کلید واژگان: قطعات لاشه, اولتراسوند, معادلات رگرسیون, انحراف استاندارد باقی ماندهAwareness of the animal carcass parts and fat-tail weight، in live animal can help to select and determine the optimum slaughtering age. For this purpose، live weight، phenotypic dimension of fat-tail as well as back fat thickness and eye muscle area were measured by ultrasound in 38 Moghani male lambs. Then، all sheep were slaughtered and after removal of their internal organs، carcasses were stored in cold temperatures for 24 hours at 4 °C. Then، each carcass was divided into two equal parts. Right sides of each carcass were cut in to، leg، shoulder، brisket، rack and neck and were weighed. Data analysis showed that body weight alone explains the 0. 85، 0. 43، 0. 56، 0. 70، 0. 52 and 0. 50 of the variations of half-carcasses، neck، shoulder، leg، rack and brisket، respectively. Residual standard deviation (RSD) in these equations was also very low and range from 0. 10 to 0. 50. Coefficient of determination of all equations were increased with adding variables measured by ultrasound in multivariate models except for neck weight، and were increased to 0. 86، 0. 43، 0. 59، 0. 73، 0. 58 and 0. 57، respectively. Coefficient of determination was 0. 78 for estimated fat-tail weight with the use of circumference، width and diameter of the fat-tail in step wise procedure. While، coefficient of determination with using full model increased to 0. 81. Based on results of this research، prediction of carcass cuts and fat tail weight is possible with high accuracy by using some phenotypic and ultrasound measurements.Keywords: Carcass parts, Ultrasound, Regression equations, Residual standard deviation
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.