به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "caspian" در نشریات گروه "علوم دام"

تکرار جستجوی کلیدواژه «caspian» در نشریات گروه «کشاورزی»
جستجوی caspian در مقالات مجلات علمی
  • سمیه منوچهر*، قدرت الله رحیمی میانجی، سید حسن حافظیان، محمدباقر زندی باغچه مریم

    زمینه مطالعاتی:

     تنوع تعداد کپی (CNV) همراه با چند شکلی های تک نوکلئوتیدی(SNPs) ، نقش کلیدی در تنوع ژنتیکی در گونه های اهلی ایفا می کنند. با این وجود در مورد تنوع تعداد کپی در اسب ایرانی اطلاعات کمی موجود است.

    روش کار

    در این مطالعه، شناسایی CNV ها و نواحی مرتبط به تنوع تعداد کپی (CNVR) های موجود در ژنوم اسب های کاسپین و ترکمن بر اساس داده های SNP آرایه اسب (Equine70k) انجام شد.

    نتایج

    در مجموع تعداد 202 و 105 به ترتیب CNV و CNVRs در اسب های مورد مطالعه شناسایی شدند که 08/1 درصد ژنوم اسب را پوشش می دهند. تنوع تعداد کپی در نژاد اسب کاسپین نسبت به نژاد اسب ترکمن 6/1 برابر بیشتر بود. همچنین متوسط طول تنوع تعداد کپی در نژاد کاسپین بزرگتر از نژاد ترکمن بود. در هر دو نژاد تعداد رخداد ژنتیکی اضافه نسبت به رخداد ژنتیکی حذف بیشتر بود. در اسب های نژاد کاسپین کروموزم های شماره یک، سه و دوازده و در اسب های نژاد ترکمن کروموزوم شماره یک، شش و دوازده به ترتیب بیشترین تغییر در تعداد کپی را نشان دادند. آنالیز عملکردی نشان داد که نواحی CNVR های شناسایی شده با 434 ژن همپوشانی داشتند که بیشتر این ژن ها در بین نمونه های اسب دو نژاد مشترک بودند(بیش از 60 درصد). همچنین آنالیز KEGG چندین مسیر بیولوژیکی از جمله حس بویایی، محرک شیمیایی، پردازش آنتی ژن و مسیر سیگنال دهی پروتئین G را نشان داد.

    نتیجه گیری نهایی:

     این اولین گزارش CNV در اسب های های ترکمن و کاسپین است و یافته های این تحقیق می توانند اطلاعات ارزشمندی را برای درک بهتر ژنوم اسب و هم چنین ارتباط صفات مهم عملکردی با CNVR ها و ژن های همراه آن ها در مطالعات آتی در نژادهای اسب را فراهم نمایند.

    کلید واژگان: آرایه SNP, تنوع تعداد کپی, ترکمن, کاسپین
    Somaye Manoochehr *, Ghodrat Rahimi Mianji, Sayed Hassan Hafezian, MohamdBagher Zandi Nagche Maram
    Introduction

    Horses have played an important role in the history of Iranians during different centuries. They kept horses for various aims such as agriculture, transportation, sport, food sources. Iran has a suitable climatic, social and economic potential for keeping and breeding horses, that is why it has been created different breeds using the selection and breeding. But due to problems such as mechanization, lack of government support, export ban, high costs of breeding and maintenance, import of foreign horses, lack of proper planning, interest in keeping horses has decreased. So, unfortunately, only a few native Iranian breeds remain. Additional investigation of the equine genomic architecture is critical for a better understanding of the equine genome, as well as for expanded comparisons across diverse mammalian species. Turkmen and Caspian horses are well-known breeds of Iranian horse breeds. These breeds were historically selected to perform distinct tasks and therefore may harbor a wealth of unique variation at the genome level. Copy number variation (CNV) along with single nonucleotide polymorphisms (SNPs) play a key role in genetic diversity in livestock species. CNVs, a term that refers to a change in the number of copies of a genomic segment, are responsible for more sequence differences between individuals than SNPs and are considered to be a major source of genetic variation contributing to differences in phenotypes (Beckmann et al, 2007). Several studies identified copy number variations in horses using different techniques (Doan et al, 2012). Part of these studies tried to establish associations between CNVs and a specific trait, a disease or even gene expression (Schurink et al, 2017). Most of these studies found either no association or inconclusive associations as the number of horses with phenotypic information or with specific CNVs were limited. For example, a 62 kb duplication on Equus caballus (ECA) chromosome 10 seemed to be related to recurrent laryngeal neuropathy (Dupuis et al, 2013). However, little is known about CNV in Iranian horses.

    Materials and Methods

    In this study, detection of CNVs and CNVRs were performed based on SNP data from Caspian and Turkman horse breeds were genotyped via Equine70k SNP beadchip. PennCNV software was only used to detect CNV on autosomes. The PennCNV algorithm was only applied to autosomes (command: -lastchr 26) to identify individual-based CNVs. To increase the confidence of the detected CNVs, quality control was performed by employing standard exclusions of the LRR (standard deviation of LRR) <0.3, a BAF drift <0.01 and a waviness factor <0.05. We classified the status of these CNV into two categories: “loss” (CNV containing a deletion) and “gain” (CNV containing a duplication). The CNVRs were determined by aggregating the overlapping CNVs with CNVRuler. BioMart in the Ensembl database and DAVID was employed to identify genes located in CNVRs and GO terms and KEGG pathway analyses respectively. Quantitative real-time PCR (qPCR) was applied to validate the CNVRs that were detected in this study.

    Results and Discussion

    A total of 202 and 105 CNVs and CNVRs were identified in the studied horses, respectively, which cover 1.08% of the horse genome. The number CNVs in Caspian breed were 1.6 times more than Turkmen. Also, the average size of CNVs in Caspian breed was longer than Turkmen. In both breeds, the genetic event of gain was higher than the genetic event of deletion. In Caspian breed, chromosomes 1, 3, 12, and in the Turkmen breed, chromosomes 1, 6 and 12 showed the most changes in CNVs, respectively. Functional analysis showed that the identified CNVRs overlapped with 434 genes and the most of these genes were common between the two horse breeds (more than 60%). Among these genes, PPARG and GALR have potential related with breed-specific traits. The KEGG pathway analysis also identified several pathways that are significantly enriched in olfactory sensory perception, chemical stimulus sensory perception, antigen processing, and G protein signaling pathway. Also, 60% of successfully detected CNVRs were confirmed by Real-time qPCR. The results of this study were compared with the results of eight other studies. For example, we concluded that the average size of the CNVRs detected by the 70k arrays and the 50K arrays were significantly larger than obtained by the CGH and NGS arrays. This may be due to the relatively low coverage and non-uniform distribution of SNP in the equine genome in SNP arrays. Possible reasons for the differences between our results and some CNV studies can be related to different parameters such as sample size and genetic background, different detection platforms and CNV retrieval algorithms, CNV definitions and CNVRs, as well as random error estimation methods (Pinto et al. 2011).

    Conclusions

    CNVs can describe part of the phenotypic diversity and adaptation evidence in Iranian horses. With regard to Genes identified in a number of cellular components, biological processes and molecular functions within CNVRs, the importance of such CNVRs and the possible effect needs to be studied and may interest insight into the functional and adaptive consequence of CNVs in horse. In total, the number of CNVs in the Caspian breed was greater than in the Turkmen breed, and also the CNV length in the number of copies in the Caspian breed was greater than in the Turkmen breed. In both breeds, there were overlapping genes with CNVRs that were significantly enriched in biological pathways, including sensory perception, immunity, and metabolism. This is the first CNV report on Turkmen and Caspian horses and the findings of this study could provide valuable information for better understanding of the horse genome and also the important performance traits with CNVRs and associated genes for the future studies in horse breeds.

    Keywords: SNP BeadChip, copy number variation, Turkmen, Caspian
  • رضا سید شریفی *، سجاد بادبرین، نعمت هدایت، سیما ساور، جمال سیف، حسن خمیس

    نژادهای بومی به دلیل دارای بودن ویژگی های منحصر به فرد، جزء ذخایر ژنتیکی کشور محسوب شده و شناخت بیشتر ساختار ژنتیکی آنها به حفظ و حراست آنها و تدوین برنامه های اصلاح نژادی کمک خواهد کرد. در این پژوهش تنوع ژنتیکی 136 راس اسب از سه نژاد ایرانی (کاسپین، عرب و تالشی) با استفاده از 12 نشانگر ریزماهواره توصیه شده توسط انجمن بین المللی ژنتیک حیوانی، مورد بررسی قرار گرفت. تمام نشانگرهای استفاده شده چند شکل بودند و نشانگرهای ASB17 با 12 آلل و HMS6 با 6 آلل به ترتیب بیشترین و کمترین تعداد آلل را تولید کردند. بیشترین و کمترین میزان هتروزیگوسیتی مورد انتظار به ترتیب در نشانگرهای VHL20 (0/78) و ASB23 (0/62) محاسبه شد. میانگین شاخص شانون برای همه جایگاه ها برابر با 1/72 به دست آمد. در نمودار فیلوژنی رسم شده با استفاده از ضریب تشابه جاکارد و روش UPGMA (14)، اسب های کاسپین و تالشی در یک شاخه و اسب های عرب در شاخه جداگانه قرار گرفت. آنالیز واریانس مولکولی نشان داد که تنوع ژنتیکی زیادی در درون نژادهای بررسی شده وجود دارد و با توجه به جمعیت کم اسب های تالشی و کاسپین، پیشنهاد می شود برنامه های اصلاح نژادی جهت بهبود کارایی و جلوگیری از انقراض آنها تا رسیدن به سطح امن طراحی و اجرا گردد

    کلید واژگان: اسب های تالشی, تنوع ژنتیکی, روابط فیلوژنی, کاسپین و عرب, نشانگرهای ریزماهواره
    Reza Seyedsharifi*
    Introduction

    Due to having historical value and climatic diverse, Iran has unique horse breeds. Unfortunately, due to the lack of attention and control of the import of foreign breeds into this rich
    genetic source, huge damage has been created. Therefore, many horse breeds in the country got crossbred and their racial purity reduced. Knowing the genetic structure of native breeds will play an important role in their safeguarding and ensuring of their survival. Indigenous breeds, due to their unique characteristics, are considered as part of the genetic resources of the country, and their genetic structure will help them to protect and develop eugenic programs.

    Materials and Methods

     This study was conducted on 136 horses including Taleshi (25 samples), Caspian (49 samples) and Arabic (62 samples) breeds from their breeding areas. Taleshi horse samples was captured from local stock in the Guilan province, Caspian samples was captured from horse riding clubs around Tehran and Guilan provinces, and Arabian samples was captured from horse riding clubs around the provinces of Tehran, Khuzestan and Alborz. They were unrelated and selected randomly. The race recognition of horses was based on books published by the Federation of Equestrian and their phenotypic characteristics. After determining of the concentration and uniformity of the concentration of extracted DNA, all individuals under study were conducted for 12 microsatellite markers recommended by the Animal Genetic Association (ISAG) to determine the genotype in order to estimate the parameters such as heterozygosity, inbreeding, Hardy and Weinberg equilibrium, and so on and find an appropriate strategy to maintain these valuable breeds. The number of observed alleles (na), and effective (ne), observed heterozygosity (Ho) and the Expectation case (He), Shannon index (I), inbreeding coefficient (ISF), genetic distance, genetic similarity, Hardy-Weinberg equilibrium, and phylogeny tree between races were calculated using POPGENE 1.31 software.

    Results and Discussion

     All of the used markers were multi-shaped and the ASB17 markers with 12 alleles and HMS6 produced the highest and lowest number of alleles with 6 alleles, respectively.
    The highest and lowest expected heterozygosity were calculated in VHL20 (0.78) and ASB23 (0.62) markers, and the average Shannon index for all sites was 1.72. Hardy Weinberg balance
    analysis by Chi square test showed that except ASB2 and HMS3 markers in Taleshi breed, ASB17 and HTG4 markers in the Caspian breed and ASB17 markers in the Arabic breed, all markers had a significant deviation from Hardy and Weinberg equilibrium (P <0.05). The highest observed heterozygosity was related to AHT5 marker (0.81) and the lowest observed heterozygote was related to ASB17 and HTG4 markers (0.68). The Shannon index, like the observed heterozygosity, shows the amount of genetic diversity, and because the maximum value is equal to Ln (n), it is useful to express the genetic diversity of multi-formed sites. The highest and lowest values of Shannon index were 1.96 and 1.46, respectively, for VHL20 and HTG4 markers. Given the fact that the VHL20 marker showed the highest and the HTG4 marker showed the least effective allele, so the calculated values for the Shannon index are justified. Phylogeny diagram showed that Caspian and Taleshi horses were placed in one branch and Arab horses in separate branch.

    Conclusion

    Breeds with fewer populations are more at risk for genetic changes and extinction. Reducing of the genetic diversity of indigenous populations will result in the loss of many useful
    genes, especially those that are compatible with different environments and resistant to regional diseases. Undoubtedly, it is very important to pay attention to the genetic diversity of small-sized
    population of breeds such as Taleshi and Caspian. The results of this study showed that due to the low number of Caspian and Taleshi horses, genetic diversity is still at a high level, so it would be hoped that by adopting the principled measures, we would prevent their extinction in the long duration.

    Keywords: Genetic diversity, Microsatellite markers, phylogeny tree, Taleshi, Caspian, Arabianhorse
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال