به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "انرژی نهفته" در نشریات گروه "هنر و معماری"

جستجوی انرژی نهفته در مقالات مجلات علمی
  • آرمین گلشاهی، وحید قبادیان *، مهرداد متین

    آپارتمان های مسکونی، به دلیل اهمیت راه اندازی سریعتر و تولید محصول، از جمله پروژه های هستند که بازگشت سرمایه بستگی بسیار مستقیم به تسریع زمان اجرا و بهره برداری آن دارد. امروزه مساله تغییرات آب وهوای جهانی و انتشار گازهای گلخانه ای و آسیب پذیری جوامع انسانی نسبت به این پدیده ها به شدت مطرح است و انرژی کارایی در توسعه های شهری یک فاکتور کلیدی در پایداری شهرها محسوب می شود. لذا در این مقاله هدف بررسی عوامل موثر بر کاهش انرژی نهفته در ساخت و بازسازی آپارتمان های مسکونی از طریق بهره گیری ازابزار نمونه سازی داده های ساختمان است. به منظور تجزیه و تحلیل اطلاعات از روش ANP فازی استفاده می شود. نتایج نشان دهنده آن است که شاخص فنی (A3) بیشترین نزدیکی را به جواب ایده آل مثبت و بیشترین فاصله را از جواب ایده آل منفی دارا می باشد و الویت نخست کاهش انرژی نهفته در ساخت و بازسازی آپارتمان های مسکونی می باشد.

    کلید واژگان: انرژی نهفته, آپارتمان مسکونی, ساخت و بازسازی, مدیریت پروژه
    Armin Golshahi, Vahid Gobadiyan*, Mehrdad Matin

    <span lang="EN-US" style="font-family: 'Times New Roman',serif; mso-ascii-theme-font: major-bidi; mso-hansi-theme-font: major-bidi; mso-bidi-theme-font: major-bidi;">One of the ways to achieve sustainable development is reducing energy consumption and greenhouse gas emissions, which has received more attention from researchers and politicians in the last two decades, is the modification of the city form. The study of latent energy in global experiences also goes back to recent decades, and it is in this field that the poverty of studies and research in Iran is more evident. This study examines the factors affecting the reduction of latent energy in the construction and renovation of residential apartments. A case study is conducted in Lahijan city. The purpose of this study is to identify and analyze factors that are effective in reducing energy consumption in residential apartments. For this purpose, various factors including the use of materials with high energy efficiency, the use of renewable energy sources, optimization of ventilation systems, and high energy efficiency construction and renovation solutions are investigated. The research method in this study includes the study of related documents and sources, expert interviews and field observation. The results of this study will lead to the presentation of executive policies and practical recommendations to reduce latent energy in residential apartments in Lahijan city. This study can help decision makers and related organizations in the field of policy and planning related to reducing energy consumption in residential buildings. Therefore, the aim of this article is to investigate the factors affecting the reduction of latent energy in the construction and renovation of residential apartments by using the building data prototyping tool. In order to analyze the information, the fuzzy ANP method is used. The results show that the technical index (A3) is the closest to the positive ideal answer and the greatest distance from the negative ideal answer, and the first priority is to reduce the latent energy in the construction and renovation of residential apartments. Also, the results showed that creating effective policies and measures in the field of efficient building standards, encouraging the use of green technologies and raising the awareness of residents about energy consumption can help improve the reduction of latent energy. According to the results, taking measures to reduce latent energy in the construction and renovation of residential apartments is of great importance, and there is a need to pay attention to the effective factors and create coordination between different layers of society for this</span><span dir="RTL" lang="FA" style="font-family: 'Times New Roman',serif; mso-ascii-theme-font: major-bidi; mso-hansi-theme-font: major-bidi; mso-bidi-theme-font: major-bidi;">.</span><span lang="EN-US" style="font-family: 'Times New Roman',serif; mso-ascii-theme-font: major-bidi; mso-hansi-theme-font: major-bidi; mso-bidi-theme-font: major-bidi;"> The conclusion of the investigation of factors affecting the reduction of latent energy in the construction and renovation of residential apartments showed that reducing energy consumption in the construction and renovation of residential apartments is very important, because this action helps to reduce energy costs, preserve the environment, and increase the quality of life of residents. Also, factors such as the use of building materials with high energy efficiency, the use of high efficiency heating and cooling systems, optimization of building design and the use of renewable energy sources can help reduce latent energy.</span>

    Keywords: Latent Energy, Residential Apartment, Construction, Renovation, Project Management
  • آذر زینلی، نیلوفر نیک قدم*، سید مجید مفیدی شمیرانی

    یکی از مسایل پیش روی طراحان و معماران، مصرف انرژی ساختمان در دوره ساخت است. انرژی مصرف شده در فرایند ساخت یک بنا مقدار زیادی از منابع را دریافت می کند، بنابراین، از طریق ارزیابی انرژی زمان ساخت که انرژی نهفته نامیده می شود می توان با انتخاب مناسب ترین مصالح و راهکارها در مصرف انرژی صرفه جویی کرد. در این مقاله به کاهش انرژی نهفته با راهکارهای اجرای معماری پرداخته خواهد شد. هدف این تحقیق کاهش مصرف انرژی در راستای حفظ محیط زیست است. در این تحقیق، با توجه به فرضیه تحقیق که چنین است: برخی راهکارها در مرحله اجرای ساختمان می توانند بر کاهش انرژی نهفته ساختمان در بندرعباس موثر باشند، ابتدا انرژی نهفته یک ساختمان 6طبقه در شهر بندرعباس محاسبه شد. سپس بر اساس نحوه تاثیر متغیرها بر انرژی نهفته کل که از چهارچوب نظری تحقیق استخراج شده است، انرژی نهفته با تغییر متغیرهای اجرا مجددا محاسبه و تحلیل شده است. نتیجه گیری در این مقاله بر مبنای سوالات تحقیق که به دنبال متغیرها و راهکارهای کاهش انرژی نهفته در زمان اجرای ساختمان است، شامل دو بخش است: یک. نتایج تیوری که محصول بررسی متون است؛ دو. نتایج تجربی که از محاسبات حاصل شده اند. دستاوردهای این پژوهش نشان می دهند که انرژی نهفته هر مترمربع ساختمان در بندرعباس در بخش معماری بین 1.9 تا 18.5 گیگاژول است. در این تحقیق، متغیرهای موثر بر انرژی نهان در زمان اجرا شامل ملاط ها، حمل ونقل، تعمیر و نگهداری ساختمان، بازسازی به جای تخریب، استفاده از مصالح بازیافتی بر انرژی نهفته کل ساختمان بررسی گردیده اند. یافته ها نشان می دهند که انتخاب مصالح می تواند باعث افزایش تا 89درصد انرژی نهفته کل ساختمان گردد که برابر با مصرف 33 سال انرژی مصرفی ساختمان است و همان طور که از نتایج تحقیق مشخص است، بیشترین تاثیر را در انرژی نهفته دارد. پس معماران با انجام محاسبات انرژی نهفته می توانند در انتخاب مصالح و جزییات و ابعاد و فضاها، بیشترین تاثیر را بر کاهش انرژی نهفته ساختمان داشته باشند. در این مقاله، راهکارهایی برای کاهش انرژی نهفته ساختمان در زمان اجرای ساختمان ارایه می شوند.

    کلید واژگان: انرژی نهفته, طراحی معماری, مصالح ساختمانی, راهکارهای معماری
    Azar Zinali Kharagy, Niloufar Nikghadam*, Seyed Majid Mofidi Shamirani

    The energy consumption of the building during construction is one of the issues that designers and architects face. The energy used in the construction process of a building consumes plenty of resources. Thus, by evaluating the energy of construction time, called latent energy, it is possible to save energy by choosing the most appropriate materials and solutions. This article focuses on reducing latent energy through architectural implementation strategies. The study aims to reduce energy consumption to protect the environment. The research hypothesizes that some solutions in the construction phase can be effective in reducing the latent energy of the building in Bandar Abbas. To this end, first, the latent energy of a 6-storey building in Bandar Abbas was calculated. Then, based on how the variables affect the total latent energy, which is extracted from the theoretical framework of the research, the latent energy is calculated and analyzed once more by changing the variables. Based on the research questions that seek the variables and strategies to reduce the latent energy during the construction of the building, the conclusion is two-faced: firstly, the theoretical results based on the text review, and secondly, experimental results obtained from calculations. The findings of this study show that the latent energy per square meter of the building in Bandar Abbas in the architectural sector is between 1.9 to 18.5 gigajoules. In this study, the variables affecting the latent energy during execution including mortars, transportation, building maintenance, reconstruction instead of demolition, and use of recycled materials have been investigated on the latent energy of the whole building. Findings show that the choice of materials can increase up to 89% of the total latent energy of the building, which is equivalent to 33 years of energy consumption of the building and has the greatest impact on latent energy. Therefore, by performing latent energy calculations, architects can have the greatest impact on reducing the latent energy of the building through the selection of materials, details, dimensions and spaces. In this article, solutions are presented to reduce the latent energy of the building during the construction of the building.

    Keywords: latent energy, architectural design, building materials, architectural solutions
  • حمیدرضا منصوری*، شاهین حیدری

     پیش بینی 9/8 میلیارد نفر رشد جمعیت جهان تا سال 2050، نیاز به انرژی و مصرف بیشتر ذخایر را به دنبال خواهد داشت. با رشد اقتصادی فعلی، منابع سوخت فسیلی تا انتهای قرن میلادی حاضر به پایان می رسد، چون انرژی نقشی اساسی در رشد و توسعه پایدارکشورها دارد، جهان با بحران انرژی روبرو خواهد شد. کشور ما از یک سو با پهنه گسترده و در حال توسعه اقلیم گرم و خشک روبرو است که نیاز به انرژی برودتی (تولید بار برودتی و نگهداری تجهیزات آن بمراتب گرانتر و با صرف انرژی بیشتری نسبت به بار حرارتی همراه است) زیادی داشته و از سوی دیگر با اقتصادی نفت پایه در سال های آتی از ناحیه انرژی مورد تهدید خواهد بود. آمارها حاکی از مصرف 50 تا 60 درصد از انرژی در بخش معماری و شهرسازی هستند و انرژی کلی ساختمان ترکیبی متغیر از انرژی نهفته و بهره برداری می باشد، هدف مقاله تحلیل و بررسی دو بخش اصلی انرژی کلی ساختمان ، یعنی انرژی بهره برداری و انرژی نهفته، بوده تا بتوانیم با یافتن راهکارهایی مناسب از نگاه انرژی نهفته، مصرف انرژی کلی ساختمان را کاهش دهیم. روش تحقیق، بررسی و مقایسه مقادیر انرژی بهره برداری و نهفته در دوره عمر ساختمان می باشد، چون در کشور ما اندازه گیری دقیق مصرف انرژی نهفته در دوره عمر ساختمان، به دلیل فقدان اطلاعات دقیق از مراحل ساخت، مصالح و جزییات، حمل و نقل، تعمیر و نگهداری مقدور نیست. بنابراین از چند آزمایش انجام شده در کشورهای مختلف و بررسی نتایج آنها برای میزان تاثیر گذاری انواع انرژی در انرژی کلی ساختمان استفاده شده است. نتایج حاصل بیانگر اهمیت طراحی اولیه معماری و استفاده از جزییات مناسب بهمراه بهبود روش های ساخت جهت افزاش عمر ساختمان است، که البته استفاده از مصالح با انرژی نهفته کمتر، با دوام و روش های تعمیر و نگهداری مدرن باعث این افزایش خواهد شد. همچنین مقایسه مصرف انرژی نهفته و بهره برداری نشان داد که افزایش انرژی نهفته ناشی از عایق بندی اضافی و ایجاد اینرسی حرارتی با افزایش ضخامت جداره ها و سقف در طول عمر ساختمان باعث کاهش انرژی کلی از طریق کاهش مصرف انرژی بهره برداری خواهد شد.

    کلید واژگان: اقلیم گرم و خشک, انرژی کلی, انرژی بهره برداری, انرژی نهفته, باز استفاده
    HamidReza Mansouri *, Shahin Heidari

    A population of 8.9 billion up to 2050 will need more energy and resource. The economic growth accelerates fossil fuel exhaustion by the end of this century. Energy has an important role in sustainable development; therefore, the world will encounter energy crisis. In our country, vast expanse of hot dry climate is extending and so is the need of energy for cooling systems (cooling consumes more energy than heating). On the other hand, sustainability of an Oil-dependant economy will be threatened by energy crisis. Surveys reveal that 50 to 60 percent of energy consumption and also carbon and construction waste production is related to architecture and urban design. Since the total energy of the building is a combination of embodied energy and operational energy this essay aims to analyze them to find the best method for energy use reduction.Measurement of the embodied energy is not possible in Iran, owing to not having access to accurate information about the process of construction, material, details, transportation, repairs and maintenance. Therefore, some experiments of other countries were studied and their results were used to do this research. Results of this research show the importance of initial design, effective details and improvement of construction methods which can increase the durability of a building. Durable materials with less embodied energy and modern repair and maintenance methods can lead us to this goal. Furthermore, comparing embodied energy with operational energy showed that an increase in the first one, by means of extra insulation, making thermal inertia by increasing width of walls and ceilings will reduce operational energy and as well total energy use.Comprehensive system of architecture is able to make a wise balance between embodied energy and operational energy through energy-based initial design, designing flexible patterns, using materials with less embodied energy, increasing lifespan of the building, using proper details with reversible dry connections, and modern construction methods. Finally, a proper portion of energy in normal lifespan of a building will lead to reduction of total energy in architecture. Strategies recommended to reduce total energy of the building during its lifespan through decreasing and conserving embodied energy are as follows:• Initial design with energy saving approach, using long-lasting reversible, flexible, changeable construction and architecture patterns, and using durable materials with least embodied energy in production phase.• Improving technology efficiency of factories produce materials with least embodied energy, increasing the efficiency of the transportation system, decreasing carrying distance and reusing materials, installation of accessible facilities in the walls, ceilings and floor.• Improving the knowledge and methods used for splitting the components instead of demolition and using reversible proper construction details by means of dry connections (bolts and nuts) instead of wet connections (mortar, glue and resin).• Regular wise reconstruction, retrofitting, renovation, repair, maintenance when necessary to increase lifespan of the building.Keywords: Hot dry climate, Sustainable architecture, Energy consumption, Operational energy, Embodied energy, Reuse

    Keywords: Hot dry climate, energy consumption, Operational energy, Embodied energy, Reuse
  • فاطمه یوسفی، یعقوب قلی پور *
    در میان ملاک های موجود برای تشخیص ساختمان های کم انرژی، مصرف انرژی طول عمر ساختمان یکی از جامع ترین معیارها می باشد که می تواند برآورد درستی از کل انرژی مصرفی ساختمان در اختیار مهندسان قرار دهد. با توجه به عدم وجود پیشینه مناسب در خصوص بررسی وضعیت انرژی طول عمر ساختمان ها در ایران، در این مطالعه سعی شده است که مصرف انرژی طول عمر یک ساختمان واقعی با جزییات کامل برآورد گردد تا ضمن ارائه پارامترهای موثر و چالش های موجود در هر بخش، روند محاسبه به عنوان یک الگو قابل استفاده باشد. بدین منظور، یک ساختمان واقعی با اسکلت بتنی و پلان متداول که اخیرا در شهر تهران ساخته شده، به عنوان نمونه انتخاب گردید و ضمن تشریح روند محاسبه مصرف انرژی طول عمر، انرژی مراحل مختلف چرخه حیات آن برآورد شد. دستاوردهای این مطالعه حاکی از آن است که سهم انرژی نهفته اولیه ساختمان معادل 13% از کل انرژی طول عمر آن می باشد و در محدوده متداول ارقام جهانی قرار دارد. همچنین نتایج نشان می دهد که 85% مصرف انرژی طول عمر ساختمان نمونه بتنی مربوط به دوره بهره برداری است که با توجه به طول عمر نسبتا کم ساختمان ها در ایران نسبت به مقادیر جهانی، رقم بالایی محسوب می شود.
    کلید واژگان: انرژی طول عمر, ساختمان مسکونی, انرژی نهفته, اسکلت بتنی, ایران
    Fatemeh Yousefi, Yaghob Gholipour *
    Among many aspects considered to evaluate the low energy buildings, the Life Cycle Energy Consumption (LCEC) is the most comprehensive factor that can properly direct engineers and architectures to the buildings’ optimum design. The LCEC is introduced as the total energy usage associated with all stages of a building’s life cycle mainly consists of production of its materials, transportation of the materials and components, on-site construction, operation, maintenance, demolition and waste treatment. This study aims to evaluate the LCEC factor of a real building located in Tehran, Iran. Due to the lack of the investigations in this field in Iran, the methodology of estimating the building’s energy consumption is comprehensively introduced in this paper. For this purpose, a real multi-family residential building with common architectural plan and residences is selected and the process of evaluating the building’s energy consumption during various periods of its life cycle is discussed in detail. These periods include the material production, transportation, on-site construction, operation, and maintenance stage. Demolition and disposal stage is excluded from the scope of this study because of the lack of the clear information about the waste treatment process in the country. Beside, the energy usage of this stage is reported to be less than 1% of the buildings’ total LCEC according to the literature. The results of this analysis show that the embodied energy of the considered case is about 15% of its LCEC. This embodied energy that is indeed in the range of the internationally reported values can be divided into three separate parts including: 1) 12% energy usage for the building material production, 2) 1% energy usage for the material transportation and on-site construction, and 3) 2% energy consumption for the building maintenance stage. In this regard, it seems that the energy usage during on-site construction period of the building has the minimum effect on the building’s LCEC (about 0.2%) and consequently may be ignored in the LCEC process. It is also concluded that 85% of the considered building’s LCEC belongs to the operation stage in which the effect of climate change in terms of global warming is considered via a simple method based on the change of the thermal comfort setpoints. Although this operational energy is in the range of the values reported in the common international investigations, it is too high for Iran where the lifespan of the residential buildings is respectively short. If the lifespan of the considered building in this study increase from 35 years to 60 years, the portion of the operational energy can increase up to 91% of the building’s LCEC. Therefore, proper estimation of the building’s lifespan is demanded for most of the energy assessment studies. Accurate estimation of the energy content of the building materials in Iran is also highly necessitated. If the material production industry in Iran consumes averagely 30% more energy respect to the average values of the world’s industry, the building’s operational energy will reduce about 3% and respectively its total embodied energy will increase about the same amount.
    Keywords: Life Cycle, Energy consumption, Residential building, Concrete frame, Embodied energy, Iran
  • نرجس فروزان، خلیل حاجیپور*، علی سلطانی
    کاهش مصرف انرژی و به دنبال آن انتشارات گازهای گلخانه ای به منظور کاهش اثرات تغییر آب وهوای جهانی به یک ضرورت جهانی تبدیل شده است. محیط انسان ساخت مسئول حدودا 40 درصد از مصرف انرژی در کشور ایران می باشد و قسمت اعظم محیط انسان ساخت به کاربری مسکونی اختصاص دارد. انرژی مصرف شده در تولید و فرآوری مصالح ساختمانی و در فرآیندهای ساخت ساختمان، معمولا با استفاده از انرژی نهفته اندازه گیری می شوند. به طور کلی انرژی کل انرژی مصرفی ساختمان در طول دوره حیاتش را تشکیل می دهد. انرژی / 1 تا 5 / نهفته یک ساختمان نسبتی بین 3 نهفته از جمله پارامترهای اصلی در ارزیابی عملکرد زیست-محیطی ساختمان ها است و ارتقاء راندمان انرژی در بخش مسکونی مناطق شهری به بخش مهمی در دستیابی به توسعه پایدار تبدیل شده است. لذا این پژوهش با هدف اصلی بررسی پایداری الگوهای مسکن از منظر انرژی نهفته صورت گرفته است. بدین منظور الگوهای مسکن به هفت دسته کلی حیاط مرکزی، بافت فرسوده، ویلایی، ردیفی یک، دو و سه طبقه و آپارتمانی تقسیم بندی شده اند. به منظور محاسبه انرژی نهفته ابتدا انرژی ساختمان ها بر اساس نوع سازه و با کمک تحلیل واریانس محاسبه شدند. نتایج مطالعه در این زمینه نشان می دهد ساختمان های مسکونی با سازه آجر و چوب کمترین میزان مصرف سرانه انرژی نهفته را به خود اختصاص داده اند و پس از آن به ترتیب خانه های با سازه اسکلت بتنی آجر سفالی، اسکلت فلزی آجر سفالی، اسکلت بتنی آجری، آجر و آهن تیرچه بلوک بتنی قرار دارند و در آخر اسکلت فلزی آجری بیشترین میزان سرانه مصرف انرژی نهفته را دارا می باشند. دارای کمترین سرانه انرژی در بین سایر الگوها هستند و این GJ/ در الگوهای مسکن، خانه های حیاط مرکزی با 2 اولویت بندی پس از آن به ترتیب عبارت است از: خانه های ردیفی یک طبقه، آپارتمانی، خانه های ردیفی دو طبقه، خانه های بافت فرسوده، خانه های ویلایی و در آخر خانه های ردیفی سه طبقه.
    کلید واژگان: انرژی نهفته, الگوی مسکن, پایداری, میزان مصرف انرژی
    Narjes Foroozan, Khalil Hajipour*, Ali Soltani
    Introduction and Literature Review: Reducing energy consumption and greenhouse gas emissions to alleviate the effects of global warming have become a worldwide necessity. This matter has significant importance in Iran, because Iran has the seventh ranking position of global greenhouse gas emissions and its rate of growth is above global average. Building construction sector is experiencing a fast-paced growth in developing countries, like Iran, due to growth of economy and rapid urbanization. A large number of buildings are being built for residential, commercial and office purposes every year. Built environments are responsible for about 40 percent of energy consumption in Iran and it is generally approved that the greatest portion of built environment is dedicated to residential use.
    Energy consumed in producing and processing building materials and in the processes of building a house, is usually calculated using embodied energy concept. Until recently, it was generally accepted that the energy used during the occupation of a building represented a much higher proportion than its embodied energy; thus, great efforts were put into reducing energy use in this phase. New and improved technologies have reduced the operational energy through a variety of solutions, including energy-efficient equipment and appliances, improved insulation levels, low energy lighting, heat recovery systems, the provision of solar hot water systems, photovoltaic panels for generation of electricity, and other renewable technologies. However, these measures often imply an increase in materials use and energy demand for their production, which explains the growing importance of other phases in the total life cycle. According to the global literature, embodied energy of a building accounts for one third to one fifth of the total life cycle energy consumption of a specific building. However as the global trend for the new developments moves toward the zero energy/carbon buildings, the importance of the embodied energy increases. In fact embodied energy is one of the leading parameters in assessing building’s environmental performance, because in building projects, vast amounts of building materials are needed which consume great amounts of embodied energy and thus have negative effect on environment. With this preamble, improving energy efficiency of the existing dwelling stock of urban regions will increasingly be part of achieving sustainable development in future. Although this aspect of achieving sustainable development has been the subject of many global practices in recent years and global literature is almost rich in the calculations and analysis of embodied energy and life cycle energy consumption, this matter has been neglected almost completely in Iran and those few studies conducted focusing on energy in urban planning and designing fields, are mainly concentrating on transportation sector. Thus the main goal of this study is analyzing the sustainability of urban residential sector with focusing on embodied energy consumption.
    Methodology
    In this regard, residential sector in Shiraz Metropolitan has been divided into seven different dwelling types including central-yard houses, attached terrace houses (one story houses, two story and three story houses), apartments (which are buildings of four story and above), villas and declined houses. Gathering raw data in this study was challenging, considering the fact that house building in Iran is far from industrialized and prefabricated building is really limited. Unfortunately there is no data available on the average material consumption of different dwelling types in Iran and the only study similar to this was done focusing on building structures. Using this only available data, we built our data bank in Microsoft Office excel and then focused on computing average embodied energy via multiplying embodied energy of common building materials extracted from a report conducted in the University of Bath titled “Embodied Carbon: The Inventory of Carbon and Energy (ICE)” into average material consumption based on building structures. Another point we had to take into account was the unit of the available data; while embodied energy of materials were presented in gigajoules per square meter, average material consumptions of dwellings were presented in different units from square meters, to cubic meters, kilograms and blocks.
    So using density of materials we established a second data base with similar units. Normalizing this raw data through dividing average embodied energy of residential dwelling by dwelling area we calculated the capitation of embodied energy for each dwelling. Afterwards we prioritized embodied energyconsumption of dwelling types from lowest embodied energy capitation to the highest as follows: brick and wood structures with about 3 GJ/m^2 embodied energy, clay brick concrete structures, clay brick steel structures, brick concrete structures, brick and iron structures, and at last brick steel structures with about5.35 GJ/m^2 embodied energy
    Results
    To be sure of the validity of these comparisons analysis of variances (ANOVA) and Post Hoc Tests (Least significant difference- LSD) have been applied to these data in IBM SPSS statistics 19, and the result has been positive. Then collected data were shifted from structure types to dwelling types and we found out that central-yard houses with 3.6 GJ/m^2 embodied energy per capita are the most energy efficient dwelling types. After this type in sequence lay one-story terrace houses (4.21GJ/m^2 ), apartments (4.26GJ/ m^2 ), two story terrace houses (4.67GJ/m^2 ), declined houses (4.81GJ/m^2 ), villas (4.84GJ/m^2 ), and three story terrace houses (5.21GJ/m^2 ).
    Discussion and
    Conclusion
    This paper highlights the need to use location-specific data in the development of building assessment schemes and the issues related to the use of embodied energy assessment for the building sector. Absence of localized data base on building material consumption on the basis of dwelling type and lack of data on cradle to grave embodied carbon and energy of common building materials were the most important obstacles in this research. On the basis of international research, paint, bitumen, platevirgin, sheet Galvanized-virgin, steel, ceramics, primary glass, iron bars, lime, cement, and common brick are the most energy intensive materials. So on account of lack of localized data, we used international embodied energy of common building materials (cradle-to-gate) to calculate embodied energy of different dwelling types. Despite of major shortcomings in data base, noteworthy conclusions have been deducted from this work which are summarized as follows: traditional form of housing in Shiraz which is known as central yard houses in this paper with brick and wood structures (in which there is a yard in the center of the block and the residential parts are located at its periphery) are the most sustainable form of housing according to this research criteria and case study. This may owe its accomplishment to the low embodied energy of common materials used in this type of housing which we may call the most environmental friendly form of housing in Shiraz. Furthermore there is a substantial lack of data on embodied energy and carbon of materials in general, and in particular on the embodied energy and carbon of buildings to be able to do an entire evaluation of buildings in their life long period. So to do a complete research in building sector (life cycle assessment), including embodied energy, gray energy, operational energy, induced energy, Demolition/Recycling Energy, and retrofit energy are unavoidable.
    Keywords: Prioritize, neighborhoods, public buildings, passive defense, Delphi technique
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال