جستجوی مقالات مرتبط با کلیدواژه "ترکیب شبکه های عصبی" در نشریات گروه "پزشکی"
جستجوی ترکیب شبکه های عصبی در مقالات مجلات علمی
-
مقدمهغده تیروئید نسبت به غده های دیگر بدن بیشتر دچار مشکل میشود و در صورت عدم تشخیص به موقع بی نظمی های تیروئید، بیمار دچار حمله تیروئیدی و یا کمای میگزدم شده که ممکن است منجر به مرگ گردد. از این رو تشخیص بینظمی های تیروئید (پرکاری یا کمکاری) بر پایه تستهای آزمایشگاهی و کلینیکی امری ضروری است. هدف از این پژوهش ارائه مدلی مبتنی بر تکنیک داده کاوی است که قابلیت پیشبینی بیماری تیروئید از نظر کمکاری و پرکاری را داشته باشد.روشاین مطالعه از نوع توصیفی-تحلیلی بوده و پایگاه داده آن شامل 7200 رکورد مستقل مبتنی بر 21 ریسک فاکتور و برگرفته شده از مرجع داده UCI میباشد که از این تعداد 70 % نمونه ها جهت آموزش و 30 % آن ها جهت آزمون استفاده شده است. این پژوهش ابتدا به بررسی عملکرد شبکه های عصبی ، به منظور تشخیص بیماری تیروئید پرداخته و سپس به ارائه الگوریتمی به نام ترکیب شبکه های عصبی به روش سلسله مراتبی می پردازد.نتایجپس از مدل سازی و مقایسه مدلهای تولید شده و ثبت نتایج دقت پیش بینی بیماری تیروئید با استفاده از روش شبکه عصبی 6/96% و روش سلسله مراتبی 100 % به دست آمد.نتیجه گیریکاهش خطای تشخیص بیماری تیروئید همواره یکی از اهداف محققین بوده است. استفاده از روشهای مبتنی بر داده کاوی میتواند به کاهش این خطا کمک کند. این مطالعه ضمن تشخیص بیماری تیروئید به کمک شبکه های عصبی، نشان می دهد که ارائه روش قوی تری به نام ترکیب شبکه های عصبی به صورت سلسله مراتبی منجر به بهبود دقت تشخیص می شود.کلید واژگان: شبکه عصبی مصنوعی, شبکه MLP, ترکیب شبکه های عصبی, تشخیص بیماری تیروئیدی, تشخیص نوع تیروئیدIntroductionProblems in thyroid gland are more common than in other glands of human body, and if they are not diagnosed early, thyroid storm or myxedema coma is likely to happen that might lead to death; therefore, on-time diagnosis of thyroid disorders (Hypothyroidism or hyperthyroidism) based on Laboratory and clinical tests is necessary. The main object of this research was to present a model based on data mining techniques that is capable of predicting thyroid diseases.MethodsThis study was a descriptive-analytic study and its database included 7200 independent records based on 21 risk factors derived from UCI data reference. From all records, 70% were used for training and 30% for testing. First, neural networks performance was reviewed in order to diagnose thyroid diseases, and then an algorithm for combination of neural networks through hierarchical method was presented.ResultsAfter modeling and comparing the generated models and recording the results, accuracies of predicting thyroid disorders using neural network and hierarchical method were found to be 96.6% and 100% respectively.ConclusionReducing misdiagnosis of thyroid diseases has always been one of the most important aims of researchers. Using methods based on data mining can decrease these errors. This study showed that using combination of neural networks through hierarchical method improves diagnosis accuracy.Keywords: Artificial neural network, MLP network, Combination of neural networks, Thyroid diagnosis
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.