به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "‎logistic regression model" در نشریات گروه "پزشکی"

جستجوی ‎logistic regression model در مقالات مجلات علمی
  • Majid Khosravi, Aziz Rezapour*, Najmeh Moradi, Setare Nassiri Zeidi, Namamali Azadi
    Background

    Spinal muscular atrophy is an inherited neurodegenerative disorder that typically leads to severe physical disability. The present study aimed to determine the subjective evaluation of this disorder screening and analyze its influencing factors in Iran.‎    

    Methods

    A cross-sectional study was performed using data from the second survey of women either pregnant or planning to become pregnant in Tehran, the capital of Iran, in 2022. The dependent variable was the willingness to pay for this disease screening test. The independent variables included sociodemographic, economic, and health characteristics, the history of this disease or other diseases of the person and family, and knowledge about this disease in the included population. Logistic regression was utilized to identify independent variables associated with the dependent variable, and the results were reported as unadjusted and adjusted odds ratios and P values with 95% CIs. A questionnaire was used as a research tool, and STATA 17 software was used for data analysis. The monetary value of spinal muscular atrophy (SMA) screening was calculated by estimating willingness to pay using the congenital valuation method.   

    Results

    In total, 578 women were included. About 64.85% of respondents had a willingness to pay for SMA screening as the dependent variable, with a mean of $526. University education (P = 0.009) and pregnancy experience (P = 0.021) were associated with the dependent variable.  

    Conclusion

    Iranian women expressed their willingness to undergo screening tests, but due to financial constraints, they expected the government and nongovernmental organizations to bear most of the cost.

    Keywords: Spinal Muscular Atrophy, Willingness To Pay, Carrier Screening, Contingent Valuation ‎Method, ‎Logistic Regression Model
  • Hassan Khorsha, Manoochehr Babanezhad*, Naser Behnampour

    Background and

    Purpose

    Evaluating the causal association effect of risk factors is essential in estimating the mortality rate among COVID-19 patients. Much research has been conducted to assess the impact of COVID-19 on death in various countries worldwide. However, few studies have addressed the effect of causal association of risk factors. This study aims to address this gap by estimating the impact of COVID-19 on death by evaluating the causal association with the risk factors. 

    Materials and Methods

    The research population included all inpatients with initial COVID-19 symptoms, confirmed by their PCR test results. They were admitted to hospitals affiliated with Golestan University of Medical Science, Golestan, Iran, in 2020. We employed the propensity score method, an effective statistical technique for evaluating the causal association effect of risk factors in observational studies. We also used the student and chi-squared tests to compare the differences between the two study groups.

    Results

    We used the propensity score matching estimation approach and logistic regression analysis for comparison. Of 6379 inpatients, 5581 (87.5%) were discharged or recovered, and 798 (12.5%) died. The causal association between treatment results (discharged vs died) and variables of PCR test, SpO2, gender, age, and hospitalization duration in ICU were statistically significant. 

    Conclusion

    The propensity score matching estimation method revealed a high risk of death in patients with PCR+ test diagnosis. Specifically, using this approach, the above-measured risk factors increased the chance of death in patients with PCR+ to 72%. However, the traditional multiple logistic regression model estimated the risk of death at 46%, suggesting potential underestimation. This disparity might be due to better control of the effect of the above-measured risk factors by the propensity score matching. Therefore, the former estimating approach is more effective in assessing the impact of COVID-19 on death.

    Keywords: COVID-19, Risk factors, Causal association, Propensity score, Propensity score matching, logistic regression model
  • Karimollah Hajian-Tilaki, Zahra Geraili, Vahid Nassiri
    Introduction

    In clinical practices, multiple biomarkers are frequently used on the same subjects for diagnosis of an adverse outcome. This study compares two alternative multiple linear regression approaches as the logistic regression model and the discriminant function score in combing several markers.

    Methods

    Ten thousand simulated data sets were generated from binormal and non-binormal pairs of distributions with different sample sizes and correlation structures. Each dataset underwent a logistic regression and the discriminant analysis simultaneously. The ROC analysis was performed with each marker alone and also their combining scores. For two alternative approaches, the average of AUC and its root mean square error (RMSE) were estimated over 10000 replications trials for all configurations and sample sizes used. The practical utility of the two methods is further illustrated with a clinical example of real data as well.

    Results

    The two approaches yielded identical accuracy in particular with binormal data. With non- binormal data, the logistic regression risk score produced an equal or a slightly better accuracy than the discriminate function score.

    Conclusion

    Overall, the two approaches yield rather identical results. However, adopting the logistic regression model may incorporate slightly better accuracy index than discriminant analysis with non-binormal data.

    Keywords: Logistic regression model, Discriminant function score, ROC analysis, Area under the curve (AUC), Combining multiplebiomarkers
  • Mahmoud Hajipour, Niloufar Taherpour, Haleh Fateh, Ebrahim Yousefi, Koorosh Etemad, Fatemeh Zolfizadeh, Abdolhalim Rajabi, Tannaz Valadbeigi, Yadollah Mehrabi
    Objectives

     Reducing infant mortality in the whole world is one of the millennium development goals.The aim of this study was to determine the factors related to infant mortality using data mining algorithms.

    Methods

     This population-based case-control study was conducted in eight provinces of Iran. A sum of 2,386 mothers (1,076 cases and 1,310 controls) enrolled in this study. Data were extracted from health records of mothers and filled with checklists in health centers. We employed several data mining algorithms such as AdaBoost classifier, Support Vector Machine, Artificial Neural Networks, Random Forests, K-nearest neighborhood, and Naïve Bayes in order to recognize the important predictors of infant death; binary logistic regression model was used to clarify the role of each selected predictor.

    Results

     In this study, 58.7% of infant mortalities occurred in rural areas, that 55.6% of them were boys. Moreover, Naïve Bayes and Random Forest were highly capable of predicting related factors among data mining models. Also, the results showed that events during pregnancy such as dental disorders, high blood pressure, loss of parents, factors related to infants such as low birth weight, and factors related to mothers like consanguineous marriage and gap of pregnancy (< 3 years) were all risk factors while the age of pregnancy (18 - 35 year) and a high degree of education were protective factors.

    Conclusions

     Infant mortality is the consequence of a variety of factors, including factors related to infants themselves and their mothers and events during pregnancy. Owing to the high accuracy and ability of modern modeling compared to traditional modeling, it is recommended to use machine learning tools for indicating risk factors of infant mortality.

    Keywords: Risk Factors, Infant Mortality, Machine Learning, Logistic Regression Model
  • Shamsa Kanwal, Abdul Akhtar
    Introduction

    Pakistan, a country with a 27 high burden countries of multidrug resistance tuberculosis. To predict the associated risk factors and proportion of loss to follow up among MDR-TB patients treated at PMDT sites of Punjab from 2017 to 2019.

    Methodology

    This case control study based on the standardized reporting and recording case record forms called as Electronic Nominal Review System (ENRS) of National TB Control Program, Pakistan. A logistic regression model was used to assess risk factors of lost to follow up MDR-TB patients.

    Results

    A total of 539 patients with MDR-TB were included in the final analysis. Among them, 207 patients (7.5%) had lost to follow up outcome at the end of the study. MDR-TB lost to follow up patients were more likely to report older age (AOR: 1.40, CI: 1.14-1.71, p=0.000),  history of lost to follow up from first line drugs treatment (AOR: 0.39, CI: 0.28-0.56, p=0.000), co-morbid (AOR:1.54, CI: 1.24-1.91, p=0.000), adverse reaction of second line drugs (AOR: 0.45, CI: 0.37-0.56, p=0.000), long distance between patient’s home and PMDT site (AOR: 0.68, CI: 0.52-0.89, p=0.001).

    Conclusion

    The history of lost to follow up from first line drugs treatment, co-morbid, older age and long distance were independent risk factors of MDR-TB. Proper training for PMDT sites staff, friendly follow up services and psychological counseling may help to reduce lost to follow up.

    Keywords: Multidrug resistancetuberculosis, Lost to follow up, Risk factors, Punjab, Logistic regression model
  • Maryam Ganji, Mir Saeed Yekaninejad, Mahdi Yaseri
    Background and Aim
    Previous studies about hypertension and risk factors have shown the linear relationship between them. However, we can improve the fit of models with some changes and have a better form for estimation of coefficients and interpret the effects of variables.
    Methods & Materials: This survey was a cross-sectional study from 2010 to 2011 in Yazd, Iran. The participants were among the subjects aged from 40 to 80. Body mass index (BMI), sex, age, renal failure, history of diabetes (years of disease), type of diabetes (type 1 or type 2), the number of cigarettes per day and years of smoking were predictors and the binary response returned to hypertension (yes or no). The traditional logistic model was used for determining the relationship between covariates and the outcome. Then, the models were modified with multivariable fractional polynomials.
    Results
    Our findings displayed fitting the multivariable fractional polynomials (MFP) model in the parametric model which was the best fit for the modeling. The difference deviance in MFP was 21.952 (P
    Conclusion
    MFP model approach is an alternative procedure that can solve previous problems about the categorical approach, step function, and cut- off points.
    Keywords: Likelihood functions, Logistic regression model, Statistical models, Hypertension, Body mass index
  • فرید زایری، مائده امینی*، ناهید خلدی، عباس مقیم بیگی
    مقدمه و هدف
    اختلال رشد به عنوان یکی از مسایل مهم بهداشت و سلامت در جهان به خصوص در کشورهای درحال توسعه از جمله ایران به شمار می رود که به ناتوانی در میزان رشد در طول زمان اشاره دارد. هدف از انجام این مطالعه، تعیین مهمترین عوامل مرتبط با بروز اختلال رشد کودکان زیر دو سال به کمک مدل رگرسیون چند سطحی است.
    مواد و روش ها
    در این مطالعه طولی، با استفاده از روش نمونه گیری خوشه ای2182 کودک زیر دو سال به صورت تصادفی از بین 8 مرکز بهداشت تهران انتخاب شدند. اختلال رشد به صورت کمبود وزن (حداقل 50 گرم) کودکان در هر بار مراجعه به مراکز بهداشت در مقایسه با مراجعه قبلی تعریف شد. برای تحلیل و شناسایی عوامل اثرگذار، مدل رگرسیون لجستیک سه سطحی برازش داده شد.
    نتایج
    در تحلیل رگرسیون لجستیک سه سطحی، تب (p = 0.299)، تغذیه با شیر مادر دو ساعت بعد از تولد (p = 0.787) و سن کودک موقع شروع غذای مکمل (p = 0.165) معنادار نبودند، اما دندان درآوردن، ابتلا به اسهال، عفونت های ادراری و تنفسی، قطع شیر مادر و سایر بیماری ها از نظر آماری بر بروز اختلال رشد اثر معنی دار داشتند (p < 0.001). مقدارواریانس در سطح سوم (مراکز بهداشتی)، 0/78 با خطای استاندارد 0/46 برآورد شد. در سطح دوم (کودکان) مقدار برآورد واریانس، 0/54 با خطای استاندارد 0/09 بدست آمد.
    نتیجه گیری
    از آن جا که یافته های ما شیوع نسبتا بالایی از اختلال رشد را در جامعه مورد مطالعه نشان داد (54/2% از نوزادان، افت رشد را در طول 24 ماه اول زندگی خود تجربه کردند.)، لذا با در نظر گرفتن تاثیر عوامل خطرساز در بروز اختلال رشد در کودکان زیر دو سال مراکز بهداشتی واقع در شرق تهران، به نظر می رسد ارتقاء سطح آگاهی مادران و مراقبت های بهداشتی در کاهش و کنترل این مشکل، موثر باشد.
    کلید واژگان: اختلال رشد, کودکان زیر دو سال, عوامل خطر, مدل رگرسیون لجستیک, تحلیل چند سطحی
    Introduction
    Growth failure is one of the important health issues around the World especially in developing countries such as Iran that results inability rate of growth over time. The aim of this Research is to detect some of the most effective factors on growth failure in infants under two years old using the multilevel logistic regression model.
    Materials and Methods
    In this longitudinal study, using a cluster sampling method, 2182 children less than two years old were randomly selected from eight health centers in Tehran. Growth failure was defined as a weight decrease in a child weight (minimum 50 grams) at each attendance related to the previous evaluation. To identify the effective factors, the three-level logistic regression model was fitted.
    Results
    In three-level logistic regression model, fever (p = 0.299), breast-feeding during 2 hours after birth (p = 0.787) and age of beginning complementary food (p = 0.165) were not significant, but teething, diarrhea, catching cold, urinary tract infections, discontinuation of breast-feeding were the significant risk indicators for FTT (p < 0.001). The variance of the 3rd level (health centers) was 0.78 (SE = 0.46) and the variance of the 2nd level (infants) was estimated 0.54 (SE = 0.09).
    Discussion
    In general, our findings showed a rather high prevalence of growth failure in our study population (54.2% of infants experienced growth failure during the first 24 months of their life) therefore considering the significant risk factors in the incidence of FTT in children between 0 and 2 years in Tehran, it seems the promotion of knowledge level of mothers and healthcare providers may reduce and control this problem effectively.
    Keywords: Failure to thrive, children below two years old, risk factors, logistic regression model, multilevel analysis
  • فرید زایری، ریحانه صادقی نژاد، هدی نورکجوری، جمشید باقری، الهه غضنفری
    مقدمه و هدف
    بیماری های عروق کرونری قلب از علل شایع مرگ ومیر است و یکی از درمان های رایج در بیماران جراحی بای پاس عروق کرونری به شمار می رود. از جمله عواملی که به افزایش مرگ ومیر و عوارض پس از عمل منجر می شود، اختلال عملکرد کلیه است. هدف این پژوهش، شناسایی مهم ترین عوامل تاثیرگذار در مرگ ومیر بیماران مبتلا به نارسایی کلیه و ارائه مدل درختی برای پیش بینی درصد فوت در اثر جراحی قلب است.
    مواد و روش ها
    داده ها از یک مطالعه مقطعی از 1390 بیمار در مدت سه سال از بیمارستان قلب شریعتی تهران جمع آوری و با توجه به هدف پژوهش، بیماران وابسته به دیالیز و بقای کمتر از یک سال از مطالعه خارج شده اند. در مطالعه حاضر، برای پیش بینی پیامد فوت، مدل های رگرسیون لجستیک و رده بندی درختی با نرم افزارهای SPSS ویراست 18.0 و CART ویراست 6.0 برازش و نتایج با یکدیگر مقایسه شد.
    نتایج
    در مدل رده بندی با دقت 90 درصد متغیرهای نارسایی کلیوی شدید، کارگذاری بالن پمپ داخل آئورتی حین و پس از عمل، تنفس طولانی مدت از راه دستگاه، مدت زمان خون رسانی قلب حین عمل بیش از160 به عنوان زیرگروه های دارای خطر بالای مرگ و افراد با عوارض قلبی- بطنی پس از عمل جراحی به عنوان زیرگروه با خطر متوسط مرگ معرفی شدند. شاخص های حساسیت و ویژگی برای این مدل به ترتیب 82 درصد و 89 درصد و برای مدل لجستیک 4/80 درصد و 88 درصد به دست آمد.
    نتیجه گیری
    مدل های رده بندی درختی و رگرسیون لجستیک متغیرهای مهم تقریبا یکسانی نتیجه دادند، اما مدل درختی، دقت بیشتری داشت. متغیر کارگذاری بالن پمپ داخل آئورتی تاثیرگذارترین عامل در مرگ ومیر معرفی شد که درصد مرگ ناشی از آن برای کل بیماران حین عمل 19 درصد و پس از عمل 1/54 درصد به دست آمد.
    کلید واژگان: جراحی کرونری بای پاس, مدل رده بندی درختی, مدل رگرسیونی لجستیک, بیماران غیر وابسته به دیالیز, مرگ و میر
    Farid Zayeri, Reyhaneh Sadeghi Nejad, Hoda Noorkojuri, Jamshid Bagheri, Elaheh Ghazanfari
    Background And Objective
    Coronary artery disease is one of the most prevalent causes of death. A coronary artery bypass surgery is a common treatment for this disease. In addition, renal dysfunction can lead to increased mortality and post-operative complications. This study aimed to identify the most important factors influencing the mortality of patients who suffer from coronary artery disease and to introduce a classification approach according to Classification Tree (CART) model for predicting the mortality from this disease.
    Materials And Methods
    This research was conducted based on the information gathered from a cross-sectional study on 1390 patients (except dialysis-dependent) who undergone coronary artery bypass grafting, admitted to Cardiology ward of Shariati hospital during the years 2007-2010. The ordinary logistic regression model and a classification tree were utilized for predicting the probability of death in these patients. The SPSS version 18.0 and CART version 6.0 were used for data analysis.
    Results
    In this study, the classification tree model (CART) resulted in an accuracy of 90%. The patients with renal insufficiency, intra-aortic balloon pump placement during and after surgery, prolonged ventilation, and perfusion time over 160 were shown as the high-risk groups, while those patients with heart ventricular post-operative complications regarded as the medium-risk group. The sensitivity and specificity indices for this model were 82% and 89%, respectively, while it was 80.4% and 88%, respectively, for logistic model.
    Conclusion
    In the present study, the logistic and decision tree models led to nearly similar results, however, the decision tree model seemed to be more accurate. The IABP (Intra-Aortic Balloon Pump) was the most effective factor for mortality. The mortality rate due to this factor during and after surgery for all patients was 19% and 54.1%, respectively.
    Keywords: Coronary artery bypass graft, Classification tree model, Logistic regression model, Dialysis independent patients, Mortality
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال