جستجوی مقالات مرتبط با کلیدواژه "bayesian inference" در نشریات گروه "پزشکی"
-
Background
Along with the increasing prevalence of ESRD in developing countries, the use of more up-to-date statistical models is highly recommended. It is crucial to control potential cure pattern and heterogenicity among patients.
MethodsIn this longitudinal study, the data of 170 hemodialysis patients who visited the dialysis department of Shafa Hospital in Kerman from 2006 to 2016 were collected. To provides robust estimates the time to event data (death) were analyzed with a gamma frailty mixed cure Weibull model (MC-WG) using Bayesian inference.
ResultsAbout 49% of patients experienced the death and median survival time was 37.5 months. Older patients (0.264), female patients (0.269), and patients with higher mean serum urea levels (0.186) had a higher risk of death. Moreover, we observe a decrease in death with increase in Creatine (Cr).
ConclusionIn the MC-WG Bayesian model, the diabetes, AST, calcium, phosphorus and uric acid variables had a significant effect on the survival of hemodialysis patients, while they were not significant in the Cox PH model. The results of MC-WG Bayesian model are more consistent with other studies.
Keywords: Weibull Distribution, Long-Term Survival, Mixture Cure, Gamma Frailty, Bayesian Inference -
زمینه و هدف
با توجه به فقدان مدل توکسیکوکینتیکی مبتنی بر شواهد فیزیولوژیکی (PBTK) برای ارزیابی میزان دوز داخلی (مواجهه سیستمیک) و پیش بینی مقادیر دفع ادراری نشانگر بیولوژیکی MDI، در این مطالعه سعی شده است با استفاده از تیوری بیزین و اطلاعات موجود یک مدل توکسیکوکینتیکی برای پیش بینی دزیمتری MDI در بدن ارایه گردد و از نتایج به دست آمده جهت ارزیابی ریسک مواجهه با آن استفاده نمود.
روش بررسیدر این مطالعه به منظور ارزیابی دوز داخلی و پتانسیل مواجهه با MDI، با در نظر گرفتن عدم قطعیت پارامترها، تغییرپذیری افراد در جمعیت یک مدل PBTK توسعه و با روش تحلیل بیزین با زنجیره مارکوف مونته کارلو (MCMC) کالیبره شد. ارزیابی ریسک مواجهه شغلی از طریق تکنیک دوزیمتری معکوس به وسیله داده های پایش بیولوژیکی متیلن دی آنیلین (MDA) به عنوان نشانگر بیولوژیکی MDI در افراد مواجهه یافته با غلظت های نامعلوم از MDI انجام شد. به نحوی که مقادیر برآورده شده مواجهه خارجی جهت پی بردن به ریسک ایجاد آسیب با مقدار حد مجاز مواجهه مقایسه گردید.
یافته هاپارامترهای مجهول در مطالعه حاضر با نتایج MCMC هم گرا شده (83/1>) کالیبره و به دست آمدند. نتایج مدل PBTK نشان داد، الگو و مقدار دفع ادراری 4,4`-MDA پیش بینی شده در واحد زمان در سطح اطمینان 95% نزدیک به مقادیر تجربی برآورد شده است (9/0 = R2). نتایج دوزیمتری معکوس نشان داد هردو نفر ارزیابی شده، مواجهه سیستمیک بیشتری نسبت به مقدار NOAE تجربه نموده بودند. به نحوی در شخص A میزان غلظت مواجهه (انحراف معیار)، (856/0) 58/1 و در شخص B میزان غلظت مواجهه (انحراف معیار)، (705/0) 005/1 ug/l بوده است.
بحث و نتیجه گیریبه وسیله مدل توسعه یافته می توان دوز داخلی اندام های بدن را برآورد نمود و به ریسک مواجهات شغلی از طریق انجام دوزیمتری معکوس به وسیله داده های پایش بیولوژیکی و برآورد میزان غلظت مواجهه خارجی با MDI پی برد.
کلید واژگان: مدل توکسیکوکینتیکی فیزیولوژیکی, ارزیابی ریسک مواجهه, متیلن دی فنیل دی ایزوسیانات, استنتاج بیزینBackground and aimsGiven the lack of a developed physiologically based toxicokinetic (PBTK) model for human systemic exposure assessment of methylene diisocyanate (MDI) and prediction of its urinary metabolites, this study aims to develop a PBTK model for exposure risk assessment of MDI.
MethodsIn this study, to assess the potential exposure to the MDI, a PBTK model was constructed with parameter uncertainty and variability and calibrated using Bayesian analysis via Markov chain Monte Carlo approach. Exposure reconstruction or reverse dosimetry was performed as an occupational exposure risk assessment through time-kinetic urinary elimination of methylenedianiline (MDA), as the biomarker of MDI, in those exposed to unknown exposure scenarios.
ResultsApproximately 15 hours after the start of exposure, the amount of MDA excretion peaked. Understanding simulation results of reverse dosimetry for both exposed persons to the unknown concentration of MDI revealed experienced more systemic exposure than NOAEL (NOAEL = 0.2 ug / l), the exposure concentration (±SD) was 1.58 (±0.856) and 1.005 (±0.705) ug/l for person A and B, respectively. Comparison of predicted results with experimental data shows the model can estimate the kinetic elimination closely to experimental data (R2 = 0.9).
ConclusionDeveloped model can be performed to estimate the internal dose of body tissues and understand the risk of occupational exposures by comparing the simulation of biological monitoring with acceptable limit values and determining the potential of external exposure.
Keywords: PBTK model, Exposure risk assessment, Methylene diisocyanate (MDI), Bayesian inference -
Background
Bayesian mixture cure rate frailty model is a model used in survival analysis by controlling frailty when the fraction of cured individuals exists. The present study was performed as the first systematic review in survival analysis with cure fraction. The aim of this systematic review was to study and evaluate the related studies on Bayesian mixture cure rate frailty model. Also, this model was used to demonstrate its importance and applicability in determining the variables affecting the survival of patients with gastric cancer.
MethodsThis systematic review was done based on the PRISMA guideline by considering related searching keywords in PubMed, Scopus, Science Direct, Web of Science, and Google Scholar. Also, Bayesian mixture cure rate frailty model was used to analyze gastric cancer data.
ResultsIn the beginning, 882 studies related to survival analysis of cure rate model were found. Finally, by reading the full-text, only 4 related studies were found based on the inclusion and exclusion criteria. In these studies, semi-parametric models and parametric model with Weibull distribution were used for time-to-event data. Also, based on the results of the model, significant and affective variables on the survival of patients with gastric cancer were found.
ConclusionAccording to the results of this study, in the cure model, choice of proper distribution for the frailty variable and baseline distribution can influence the results. It was also found that place of residence, chemotherapy, morphology, and metastasis are effective variables on survival of patients with gastric cancer.
Keywords: Gastric cancer, survival, Systematic review, Mixture cure rate model, Frailty model, Bayesian inference -
Gastroenterology and Hepatology From Bed to Bench Journal, Volume:14 Issue: 2, Spring 2021, PP 115 -122Aim
The aim of this study was to apply the Bayesian mixture cure rate frailty model to determine the factors that influence shortterm and long-term survival of patients with gastric cancer
BackgroundDetermining the risk factors of gastric cancer is currently considered very important, because the disease has become one of the most dangerous types of mortal cancers. Therefore, it is possible to determine the effective risk factors of short-term and long-term survival in patients through utilizing this model.
MethodsThe present retrospective study was conducted on 339 gastric cancer patients whose data was recorded in hospitals of Kerman province, Iran, during 2001-2015. In the study, the Bayesian mixture cure rate frailty model was used to determine the effective factors of short-term and long-term survival in patients.
ResultsIn the present study, the event of interest occurred for 57.5% of patients. Over time, the survival rate of cancer patients reached its lowest point, approximately 0.3 at the end of study. According to the results of the present study, variables of chemotherapy (β=-0.35 (-0.75, - 0.03) and OR=1.59 (1.08, 2.19)), morphology (β =-0.98(-1.45, -0.48) and OR=2.99 (1.78, 4.17)), and metastasis (β =0.42(0.10, 0.93) and OR=0.39(0.01, 0.84)) were identified as effective factors in short-term and long-term survival of patients.
ConclusionThe effective factors of long-term and short-term survival can be identified by utilizing the Bayesian mixture cure rate frailty model, while it is impossible through conventional models of survival analysis. Chemotherapy, morphology, and metastasis are the most important effective factors of short-term and long-term survival in patients with gastric cancer.
Keywords: Gastric cancer, Short-term survival, Long-term survival, Cure rate frailty model, Bayesian inference -
Background
The Bayesian methods have received more attention in medical research. It is considered as a natural paradigm for dealing with applied problems in the sciences and also an alternative to the traditional frequentist approach. However, its concept is somewhat difficult to grasp by nonexperts. This study aimed to explain the foundational ideas of the Bayesian methods through an intuitive example in medical science and to illustrate some simple examples of Bayesian data analysis and the interpretation of results delivered by Bayesian analyses. In this study, data sparsity, as a problem which could be solved by this approach, was presented through an applied example. Moreover, a common sense description of Bayesian inference was offered and some illuminating examples were provided for medical investigators and nonexperts.
MethodsData augmentation prior, MCMC, and Bayes factor were introduced. Data from the Khuzestan study, a 2-phase cohort study, were applied for illustration. Also, the effect of vitamin D intervention on pregnancy outcomes was studied.
ResultsUnbiased estimate was obtained by the introduced methods.
ConclusionBayesian and data augmentation as the advanced methods provide sufficient results and deal with most data problems such as sparsity.
Keywords: Bayesian inference, Prior information, MCMC, Data augmentation
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.