به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "chest x-ray images" در نشریات گروه "پزشکی"

جستجوی chest x-ray images در مقالات مجلات علمی
  • Amir Sorayaie Azar, Ali Ghafari, Mohammad Ostadi Najar, Samin Babaei Rikan, Reza Ghafari, Maryam Farajpouri Khamene, Peyman Sheikhzadeh
    Purpose

    Coronavirus disease 2019 (Covid-19), first reported in December 2019 in Wuhan, China, has become a pandemic. Chest imaging is used for the diagnosis of Covid-19 patients and can address problems concerning Reverse Transcription-Polymerase Chain Reaction (RT-PCR) shortcomings. Chest X-ray images can act as an appropriate alternative to Computed Tomography (CT) for diagnosing Covid-19. The purpose of this study is to use a Deep Learning method for diagnosing Covid-19 cases using chest X-ray images. Thus, we propose Covidense based on the pre-trained Densenet-201 model and is trained on a dataset comprising chest X-ray images of Covid-19, normal, bacterial pneumonia, and viral pneumonia cases.

    Materials and Methods

    In this study, a total number of 1280 chest X-ray images of Covid-19, normal, bacterial and viral pneumonia cases were collected from open access repositories. Covidense, a convolutional neural network model, is based on the pre-trained DenseNet-201 architecture, and after pre-processing the images, it has been trained and tested on the images using the 5-fold cross-validation method.

    Results

    The accuracy of different classifications including classification of two classes (Covid-19, normal), three classes 1 (Covid-19, normal and bacterial pneumonia), three classes 2 (Covid-19, normal and viral pneumonia), and four classes (Covid-19, normal, bacterial pneumonia and viral pneumonia) are 99.46%, 92.86%, 93.91 %, and 91.01% respectively.

    Conclusion

    This model can differentiate pneumonia caused by Covid-19 from other types of pneumonia, including bacterial and viral. The proposed model offers high accuracy and can be of great help for effective screening. Thus, reducing the rate of infection spread. Also, it can act as a complementary tool for the detection and diagnosis of Covid-19.

    Keywords: Covid-19, Deep Learning, Convolutional Neural Network, Transfer Learning, Chest X-Ray Images
  • MohammadHosein Sadeghi, Hamid Omidi, Sedigheh Sina*
    Background

    In this study, the artificial intelligence (AI) techniques used for the detection of coronavirus disease 2019 (COVID-19) from the chest x-ray were reviewed.

    Methods

    PubMed, arXiv, and Google Scholar were used to search for AI studies.

    Results

    A total of 20 papers were extracted from Google Scholar, 14 from arXiv, and 5 from PubMed. In 17 papers, publicly available datasets and in 3 papers, independent datasets were used. 10 papers disclosed source codes. Nine papers were about creating a novel AI software, 8 papers reported the modification of the existing AI models, and 3 compared the performance of the existing AI software programs. All papers have used deep learning as AI technique. Most papers reported accuracy, specificity, and sensitivity of the models, and also the area under the curve (AUC) for investigation of the model performance for the prediction of COVID-19. Nine papers reported accuracy, sensitivity, and specificity. The number of datasets used in the studies ranged from 50 to 94323. The accuracy, sensitivity, and specificity of the models ranged from 0.88 to 0.98, 0.80 to 1.00, and 0.70 to 1.00, respectively.

    Conclusion

    The studies revealed that AI can help human in fighting the new Coronavirus.

    Keywords: COVID-19, Artificial intelligence, Chest X-ray images
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال