به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "ct scans" در نشریات گروه "پزشکی"

جستجوی ct scans در مقالات مجلات علمی
  • Reza Falahatkar, Alireza Jafari, Amin Kanani, Sedigheh Ramezani, Siavash Falahatkar, Masoomeh Afzalipoor, Ehsan Kazemnezhad Leyli
    Background

    Assessing renal volume as a potential indicator of renal function and related disorders is valuable for clinical decision-making. Computed tomography (CT) can accurately estimate actual kidney size.

    Objectives

    This study aimed to evaluate the relationship between anthropometric parameters and renal dimensions measured by CT.

    Methods

    Renal CT scan evaluations were performed on 634 individuals (308 males and 326 females) who had undergone abdominopelvic CT scans for indications unrelated to renal disease. Renal parameters, including length, width, depth, volume, and cortex length, were measured.

    Results

    The mean age of participants was 53.5 ± 13.7 years (range: 18 - 86 years). Renal dimensions in males were larger than those in females. Additionally, the left kidney showed larger dimensions than the right kidney in both genders. Renal dimensions increased with age initially, but began to decrease after the sixth decade of life. A significant negative correlation was found between age and renal length, cortex, and left renal volume. In contrast, a significant positive correlation was observed between weight and both renal depth, length, volume, and left renal cortex, as well as between height and both renal length and volume on both sides. All dimensions except renal length were greater with increasing Body Mass Index (BMI).

    Conclusions

    The results indicate a significant correlation between kidney dimensions and various anthropometric factors such as age, weight, height, and BMI. These findings provide valuable insights into kidney dimensions measured on CT scans, potentially aiding in the diagnosis and treatment of kidney diseases.

    Keywords: CT Scans, Anthropometric Measurements, Kidney Size, Renal Dimension
  • ندا پاک*، فاطمه زمانی، سارا نایبندی آتشی، آنسه صالح نیا
    زمینه و هدف

    اطلاع از آناتومی سطحی وریدهای مرکزی اهمیت بسزایی در کاهش عوارض کاتتریزاسیون دارد. آناتومی وریدهای توراسیک در بین گروه های سنی کودکان و بالغین متفاوت است. مطالعه حاضر با هدف بررسی و مقایسه محل آناتومی سطحی وریدهای توراسیک در کودکان و بالغین ایرانی براساس سی تی اسکن قفسه سینه و بررسی محل قرارگیری کاتتر ورید مرکزی در کودکان انجام شد.

    روش بررسی

    در این مطالعه مقطعی گذشته نگر که از فروردین 1395 تا مرداد 1398 در بیمارستان های دکتر شریعتی و مرکز طبی کودکان انجام شد، به ترتیب 100 سی تی اسکن قفسه سینه در بالغین و 150 مورد در کودکان بررسی شد که سی تی اسکن کودکان در سه گروه 50 نفره در سنین 3-0، 7-3 و 10-7 سال دسته بندی شدند و از نظر محل تشکیل و اتصال ورید اجوف فوقانی به دهلیز راست، محل تشکیل وریدهای براکیوسفالیک و نیز محل قرارگیری کاتتر مرکزی ارزیابی شدند. همچنین در این مطالعه تعداد 130 عدد از گرافی هایی که کاتتر سنترال وریدی برای بیماران تعبیه شده بود وارد مطالعه گردید و از نظر گروه سنی و محل قرارگیری انتهای کاتتر مورد ارزیابی قرار گرفت.

    یافته ها:

     محل تشکیل وریدهای براکیوسفالیک در بالغین اکثرا در خلف مفصل استرنوکلاویکولار بود و در کودکان خلف سر داخلی کلاویکل قرار داشت. محل تشکیل ورید اجوف فوقانی در بالغین در 52% موارد در فضای بین دنده ای اول بود، اما درجوانترین گروه کودکان در محاذات غضروف دنده دوم بود و با افزایش سن به غضروف دنده اول تغییر کرد. در بالغین شایعترین محل اتصال ورید اجوف فوقانی به دهلیز راست در محاذات سومین فضای بین دنده ای بود که در کودکان در محاذات چهارمین و سومین غضروف دنده ای بود. همچنین میزان محل مناسب انتهای کاتتر 7/74% بود.

    نتیجه گیری:

     این مطالعه نشان دهنده تفاوت محل آناتومی وریدهای مرکزی در اطفال و بالغین و تغییر محل آن ها با افزایش سن می باشد.

    کلید واژگان: آناتومی, کاتتریزاسیون, کاتتر ورید مرکزی, گرافی قفسه سینه, کودکان, سی تی اسکن, توراکس
    Neda Pak*, Fateme Zamani, Sara Naybandi Atashi, Anese Saleh Nia
    Background

    Central venous catheterization is a procedure that is being performed frequently especially in critical clinical settings. In such conditions, good knowledge of the surface anatomy of venous structures is vital to avoid possible complications which could result in life-threatening situations such as bleeding and pneumothorax. Considering the difference between venous anatomy of children and adults and even among different age groups of children, and the fact that our recent knowledge of anatomy is based on studies performed on non-Iranian population, we decided to evaluate the anatomy of the intrathoracic systemic venous system in adults and children and assess the rate of catheter malposition in children.

    Methods

    This was a retrospective cross-sectional study performed in Dr. Shariati Hospital and Children Medical Center of Excellence, Tehran, Iran, from April 2016 to August 2019. In our study, the surface location of brachiocephalic vein (BCV) formation, the junction of superior vena cava (SVC) to right atrium and, formation of SVC were examined in 150 contrast-enhanced chest computed tomography (CT) scans in children. They were classified into three groups based on their age (neonates to three years, three to seven years, and seven to ten years). Also, 100 similar CT scans in adults were being studied. The other category which has been evaluated through 130 pediatric X-rays, was the location of the tip of the central venous catheter.

    Results

    The formation of BCV was mostly depicted posterior to the sternoclavicular joint in adults while in children it’s located posterior to the medial aspect of the head of clavicle. In adults, the SVC formation was at first intercostal space (ICS) in 52% and second ICS in 29%. In first group of children, SVC was commonly at the level of 2nd costal cartilage (CC), but changed to the first ICS or first CC by increasing age. In adults, junction of right atrium to SVC was at the 3rd CC then 4th CC but in the first group of children was located at the 4th CC that changed to 3rd ICS /3rd CC by increasing age. Also, the tip of central venous catheters was located in the proper position in 74.7% of cases.

    Conclusion

    This study indicated the different anatomy of central veins in children and adults which could be a cause for malposed central catheter, so knowing this difference and controlling the tip of the catheter by ultrasound during catheterization could help in avoiding this malpositioning.

    Keywords: anatomy, catheterization, central venous catheters, chest X-Ray, children, CT scans, thorax
  • هانیه قهوچی خلیق، یعقوب پوراسد*، سرلی مقدس قولیان
    زمینه و هدف

    از آنجایی که تشخیص غدد سرطانی و بدخیم ریه با استفاده از روش های عکس برداری نظیر CT -Scan و بدون نیاز به نمونه برداری باعث کاهش ریسک پخش شدن ندول سرطانی می شود، بنابراین توسعه یک سیستم تشخیصی کامپیوتری جهت پردازش تصاویر و غدد ریوی و سپس طبقه بندی آن ها به دو دسته خوش خیم و بدخیم، در تشخیص زودهنگام سرطان ریه و نجات جان بیماران نقش بسزایی ایفا می کند. هدف از این پژوهش، دستیابی به دقت طبقه بندی بالاتر و در نتیجه دقت تشخیص بالاتر غده های بدخیم و خوش خیم می باشد.

    روش کار

    در این پژوهش الگوریتم هایی که پیش از این برای طبقه بندی غدد ریوی استفاده شده، معرفی می شود و در نهایت الگوریتم پیشنهادی ارایه می شود. در الگوریتم پیشنهادی ابتدا تصاویر سی تی اسکن ریه پیش پردازش شده و سپس به وسیله کانتور فعال چن-وسه، ناحیه ندول استخراج می شود. از ناحیه قطعه بندی شده، ویژگی های هیستوگرام، بافت و هندسی استخراج می شود. سپس این ویژگی ها با استفاده از دو طبقه بند SVM و KNN، ندول های ریوی را به دو دسته خوش خیم و بدخیم طبقه بندی می کنند.

    یافته ها:

     نتایج حاصل از پیش پردازش های اعمالی بررسی می گردد. سپس تصاویر پیش پردازش شده توسط الگوریتم چن-وسه قطعه بندی شده و ناحیه استخراج شده و تحت الگوریتم های استخراج ویژگی قرار گرفته و 25 ویژگی مختلف بافتی و هندسی برای هر غده از این نواحی استخراج می گردد. در مرحله آخر، توسط داده های استخراج شده، طبقه بند های SVM و KNN اقدام به طبقه بندی غدد می کنند. معیارهای دقت، حساسیت و میزان اختصاصی بودن در طبقه بند برتر % 8/90، % 100 و 89% بدست می آید.

    نتیجه گیری:

     این روش علاوه بر دقت بالا در تشخیص، روشی کم هزینه و کم خطر نیز می باشد. روش پیشنهادی بخاطر دارا بودن حساسیت بسیار بالا و همچنین دارا بودن مقادیر مطلوب دو معیار دقت و میزان اختصاصی بودن و تعداد پایین ویژگی های مورد استفاده جهت طبقه بندی، بعنوان یک روش کارآمد و مناسب جهت طبقه بندی غدد ریوی پیشنهاد می گردد.

    کلید واژگان: پردازش تصویر, سرطان ریه, ندول, غده, تصاویر سی تی اسکن, طبقه بندی
    Haniyeh Ghahvechi Khaligh, Yaghoub Pourasad*, Serly Moghadas Gholian
    Background

    Since the diagnosis of cancerous and malignant lung glands using imaging techniques such as CT-Scan without the need for sampling reduces the risk of spreading cancerous nodules, the development of a computerized diagnostic system for processing images and pulmonary glands and then class Their classification into two categories, benign and malignant, plays an important role in the early diagnosis of lung cancer and the survival of patients. Access to a database with a uniform statistical population of malignant and benign glands is one of the most fundamental steps in the implementation and evaluation of computerized diagnostic systems for cancer patients. In the present study, the image database consortium image collection of lung images has been used. This database includes images of CT scans of lung cancer, along with the diagnostic opinion of a specialist doctor and the identified areas of the glands. This database has been compiled by the National Cancer Organization of America, the National Health Organization and the Food and Drug Administration made available to the public. In this database, the CT images of each patient are stored in DICOM format, which is the standard for storing and suitable for processing medical images. The average incision of each scan for each patient is 254 incisions, the distance between each incision is 9 to 9 mm. The aim of this study is to achieve higher classification accuracy and therefore higher diagnostic accuracy of malignant and benign glands.

    Methods

    In this study, the algorithms that have been used to classify the pulmonary glands are introduced and finally the proposed algorithm is presented. In the proposed algorithm, the CT scan images of the lungs are pre-processed and then extracted from the nodule area by the active Chen-Wess contour. From the fragmented area, the histogram, texture and geometric features are extracted. These features then classify the pulmonary nodules into two categories, benign and malignant, using two classes, SVM and KNN. After extracting the features from the fragmented areas and normalizing them, with a large amount of data (feature) we are faced with using this data to make the final decision and classification about whether the glands are benign or malignant due to the large number. It is necessary to choose the best and most valuable features for the correct classification. There are different ways to select the feature, but due to the time consuming nature of this process, in the present study, this step is eliminated and first all the features are classified. Then, by trying and making a mistake, the best features are selected for each class. Therefore, by doing this, the feature and classification are selected at the same time and the computational load and processing time are reduced. In this research, the extracted features is given to the two well-known classifiers of the support vector machine and the nearest neighbor parameter. This database has three Excel files, the first / adjacent file contains 6 information such as the number of nodules in each patient along with the size of each nodule, the main source of the nodule and the final diagnosis of the radiologist and the treatment for each patient. The second file contains general information such as the date of each scan, the name of the company that made the CT device, the device model, the software version, and the image ID. In the third Excel file, the number of nodules larger than 9 mm and smaller than 9 mm for each patient is given.

    Results

    Each scan was examined separately by four radiologists, and scans identified by all four radiologists were added to the database. Experts have divided each nodule into one of four unknown categories: benign, benign, primary malignant, and metastatic malignancy. In this study, for each patient, the incision in which the nodule appears is selected. Also, since the nodules are classified into 4 categories, in this study, we have classified the unknown and benign category as benign and the primary malignant and malignant metastatic categories as malignant. In this study, lung images of 65 cancer patients from the mentioned database were classified, of which 49 patients had malignant nodules and 25 patients had benign nodules. In the proposed algorithm, a semi-automatic method is used to segment the pulmonary nodule area. Using an automatic classification algorithm that does not require the selection of two border points of the gland, it can increase the rate of fragmentation. Of course, the advantage of the semi-automatic segmentation method is its high classification accuracy, which is much lower in automatic segmentation. Therefore, proposing and implementing an automated segmentation algorithm that is both highly accurate is at the top of the projectchr('39')s future plans. In this study, the lung glands were classified into two categories: benign and malignant. The results of the proposed actions are examined. The pre-processed images are then aligned by the Chen-and-Three algorithm and the area is extracted and subjected to feature extraction algorithms, and 25 different tissue and geometric features are extracted for each gland from these areas. Finally, by extracted data, the SVM and KNN classifications classify the glands. Criteria for accuracy, sensitivity and specificity in the top class are obtained by 90.8%, 100% and 89%.

    Conclusion

    In addition to high accuracy in diagnosis, this method is also a low cost and low risk method. By comparing the results of the proposed method with the previous methods, the proposed method received the most sensitivity, and in many studies, the highest classification accuracy. Given that the criterion of sensitivity means the ability of classification in the correct diagnosis of the disease in a person and the criterion of specificity means the ability of classification in the correct diagnosis of the absence of the disease in the person, so it can be concluded that the criterion Sensitivity is very important in research related to glandular diagnosis in medical imaging. This is because correctly diagnosing the presence of a disease or cancer is much more important and vital than diagnosing its absence in a candidate. Therefore, the proposed method is recommended as an efficient and suitable method for classification of the pulmonary glands due to its very high sensitivity and also having the desired values of two criteria of accuracy and specificity and low number of features used for classification.

    Keywords: Image processing, Lung cancer, Nodules, Glands, CT scans, Classification
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال