به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "k‑means" در نشریات گروه "پزشکی"

جستجوی k‑means در مقالات مجلات علمی
  • Mohammadreza Sehhati, Mohammad AminTabatabaiefar, Ali Haji Gholami, Mohammad Sattari*
    Background

    Breast cancer is a type of cancer that starts in the breast tissue and affects about 10% of women at different stages of their lives. In this study, we applied a new method to predict recurrence in biological networks made from gene expression data.

    Method

    The method includes the steps such as data collection, clustering, determining differentiating genes, and classification. The eight techniques consist of random forest, support vector machine and neural network, randomforest + k‑means, hidden markov model, joint mutual information, neural network + k‑means and suportvector machine + k‑menas were implemented on 12172 genes and 200 samples.

    Results

    Thirty genes were considered as differentiating genes which used for the classification. The results showed that random forest + k‑means get better performance than other techniques. The two techniques including neural network + k‑means and random forest + k‑means performed better than other techniques in identifying high risk cases.

    Conclusion

    Thirty of 12,172 genes are considered for classification that the use of clustering has improved the classification techniques performance.

    Keywords: Classification, gene, K‑means
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال