logistic models
در نشریات گروه پزشکی-
مقدمه
تشخیص زودهنگام تومورهای مغزی با استفاده از MRI و الگوریتم های هوش مصنوعی نقش کلیدی در بهبود نتایج درمان دارد. تصاویر MRI به عنوان ابزار اصلی برای شناسایی تومورهای مغزی عمل می کنند. هدف مطالعه، ارزیابی الگوریتم های یادگیری ماشینی برای تشخیص تومور و عدم تومور با استفاده از تصاویر MRI بود.
روش هادر مجموع 2400 تصویر MRI از Kaggle.com جمع آوری شد و پیش پردازش لازم روی آنها صورت گرفت. الگوریتم هایی مانند رگرسیون لجستیک، درخت تصمیم، جنگل تصادفی، روش ساده بیز، ماشین بردار پشتیبان و K نزدیک ترین همسایه نیز بر روی تصاویر پیاده سازی شدند.
یافته هابعد از بکارگیری همه ی الگوریتم ها، مقادیر دقت آموزش، دقت آزمایش، صحت، بازخوانی، امتیاز F1، ماتریس کانفیوژن و سطح زیر منحنی راک برای ارزیابی معیارهای عملکرد بدست آمدند.
نتیجه گیریبر اساس بررسی های انجام شده، الگوریتم های رگرسیون لجستیک و جنگل تصادفی بهترین عملکرد را از خود نشان دادند. الگوریتم های نایب بیز و درخت تصمیم نیازمند بهبود هستند.
کلید واژگان: تصاویر ام آر آی، تشخیص، یادگیری ماشینی، مدل های لجستیک، جنگل تصادفیBackgroundEarly diagnosis of brain tumors using MRI and artificial intelligence algorithms is fundamental in improving treatment results. MRI images serve as the primary tool for identifying brain tumors. This study aims to evaluate machine learning algorithms for diagnosing brain tumors and non-tumors using MRI images.
MethodsFrom kaggle.com a total of 2400 MRI images were collected, and a pre-processing step was performed on them. Algorithms such as logistic regression, decision tree, random forest, simple Bayes method, support vector machine, and K nearest neighbor were also implemented on the images.
FindingsAfter applying all the algorithms, the values of training accuracy, test accuracy, accuracy, readability, F1 score, confusion matrix, and the area under the rocking curve were obtained to evaluate the performance criteria.
ConclusionThe investigations indicated that logistic regression and random forest algorithms performed the best. Naive Bayes and decision tree algorithms need improvement.
Keywords: MRI Images, Diagnosis, Machine Learning, Logistic Models, Random Forest -
Introduction
It could be beneficial to accelerate the hospitalization of patients with the identified clinical risk factorsof intensive care unit (ICU) admission, in order to control and reduce COVID-19-related mortality. This study aimedto determine the clinical risk factors associated with ICU hospitalization of COVID-19 patients.
MethodsThe currentresearch was a cross-sectional study. The study recruited 7182 patients who had positive PCR tests between February 23,2020, and September 7, 2021 and were admitted to Afzalipour Hospital in Kerman, Iran, for at least 24 hours. Their demo-graphic characteristics, underlying diseases, and clinical parameters were collected. In order to analyze the relationshipbetween the studied variables and ICU admission, multiple logistic regression model, classification tree, and supportvector machine were used.
ResultsIt was found that 14.7 percent (1056 patients) of the study participants were admit-ted to ICU. The patients’ average age was 51.25±21 years, and 52.8% of them were male. In the study, some factors suchas decreasing oxygen saturation level (OR=0.954, 95%CI: 0.944-0.964), age (OR=1.007, 95%CI: 1.004-1.011), respiratorydistress (OR=1.658, 95%CI: 1.410-1.951), reduced level of consciousness (OR=2.487, 95%CI: 1.721-3.596), hypertension(OR=1.249, 95%CI: 1.042-1.496), chronic pulmonary disease (OR=1.250, 95%CI: 1.006-1.554), heart diseases (OR=1.250,95%CI: 1.009-1.548), chronic kidney disease (OR=1.515, 95%CI: 1.111-2.066), cancer (OR=1.682, 95%CI: 1.130-2.505),seizures (OR=3.428, 95%CI: 1.615-7.274), and gender (OR=1.179, 95%CI: 1.028-1.352) were found to significantly affectICU admissions.
ConclusionAs evidenced by the obtained results, blood oxygen saturation level, the patient’s age, andtheir level of consciousness are crucial for ICU admission.
Keywords: COVID-19, intensive care units, logistic models, decision trees, support vector machine -
Background
Laryngeal damages after chemoradiation therapy (RT) in nonlaryngeal head‑and‑neck cancers (HNCs) can cause voice disorders and finally reduce the patient’s quality of life (QOL). The aim of this study was to evaluate voice and predict laryngeal damages using statistical binary logistic regression (BLR) models in patients with nonlaryngeal HNCs.
MethodsThis cross‑section experimental study was performed on seventy patients (46 males, 24 females) with an average age of 50.43 ± 16.54 years, with nonlaryngeal HNCs and eighty individuals with assumed normal voices. Subjective and objective voice assessment was carried out in three stages including before, at the end, and 6 months after treatment. Eventually, the Enter method of the BLR was used to measure the odds ratio of independent variables.
ResultsIn objective evaluation, the acoustic parameters except for F0 increased significantly (P < 0.001) at the end treatment stage and decreased 6 months after treatment. The same trend can be seen in the subjective evaluations, whereas none of the values returned to pretreatment levels. Statistical models of BLR showed that chemotherapy (P < 0.05), mean laryngeal dose (P < 0.05), V50 Gy (P = 0.002), and gender (P = 0.008) had the greatest effect on incidence laryngeal damages. The model based on acoustic analysis had the highest percentage accuracy of 84.3%, sensitivity of 87.2%, and the area under the curve of 0.927.
ConclusionsVoice evaluation and the use of BLR models to determine important factors were the optimum methods to reduce laryngeal damages and maintain the patient’s QOL.
Keywords: Head‑and‑neck neoplasms, laryngeal diseases, logistic models, radiotherapy, voicedisorders -
Introduction
Health companies need investment for development. Due to the high risk of their activities, it is very difficult to attract investment for this field, but this lack of financial resources leads to the failure of these companies, so providing a model for predicting profits and losses in companies is very important and functional.
Material and MethodsIn this study, a combination of two logistic regression al gorithms and differential analysis were used to design a profit and loss forecasting model. Also, the information of 20 companies in the field of health was used to evaluate the proposed model. 10 profitable companies and 10 loss - making companies were sele cted and for each company, nine variables independent of the financial information of these companies were collected.
ResultsThe designed prediction model was implemented on the data in this study. To do this, the data were divided into two sets: trainin g and testing. The prediction model was implemented on training data and evaluated by test data and reached 99.65% sensitivity, 94.75% specificity and 96.28% accuracy. The proposed model was then compared with the methods of decision tree C4.5, Bayesian, s upport vector machine, nearest neighborhood and multilayer neural network and it was found to have a better output.
ConclusionIn this study, it was found that the risk in the field of health investment can be reduced, so the profit and loss situation of health companies can be predicted with appropriate accuracy. It was also found that the combination of logistic regression and differential analysis algorithms can increase the accuracy of the prediction model.
Keywords: Data MiningForecast, Financial, Differential Analysis, Logistic Models -
BackgroundOne of the main health problems in the world is hepatitis B virus (HBV) infection. Vaccination and other factors can affect HBV infection. As various effective factors have been reported in different regions and studies, this study aimed to investigate the association between HBV infection and routine vaccination and other effective factors 25 years since the launch of the national vaccination program in Iran.MethodsThis cross-sectional study, conducted in 2017 in Shiraz (Iran), investigated factors such as demographic variables such as gender, education, and occupation, vaccination status, and the potential risk factors for HBV infection. Hepatitis B surface antigen (HBsAg) and anti-hepatitis B core antibody (HBc Ab) tests were performed to determine HBV infection status. The data were analyzed using R software (version 3.5.2), using multivariate logistic regressions and machine learning methods. The level of significance was considered below 0.05.ResultsA total of 2720 individuals were enrolled in the study (194 cases with HBV infection). Based on the logistic regression analyses, factors such as a family history of the disease (OR=2.53, p <0.001), vaccination (OR=0.57, P=0.004), a history of high-risk behaviors (OR=1.48, P=0.022), and occupation (OR=1.80, P=0.035) were significantly associated with HBV infection. Based on the conditional tree method, a family history of infection (p <0.001) and vaccination (P=0.023) were two important factors in classifying individuals for HBV infection.ConclusionBased on the different methods applied in this study, HBV infection was affected by factors such as a family history of the disease, national HBV vaccination, and occupation. It appears that HBV vaccination, launched by the Iranian Ministry of Health and Medical Education in 1993, has reduced HBV infection.Keywords: Hepatitis B, Risk factors, Vaccination, Logistic Models, Machine Learning
-
Background
The Gail model is the most well-known tool for breast cancer risk assessment worldwide. Although it was validated in various Western populations, inconsistent results were reported from Asian populations. We used data from a large case-control study and evaluated the discriminatory accuracy of the Gail model for breast cancer risk assessment among the Iranian female population.
MethodsWe used data from 942 breast cancer patients and 975 healthy controls at the Cancer Institute of Iran, Tehran, Iran, in 2016. We refitted the Gail model to our case-control data (the IR-Gail model). We compared the discriminatory power of the IR-Gail with the original Gail model, using ROC curve analyses and estimation of the area under the ROC curve (AUC).
ResultsExcept for the history of biopsies that showed an extremely high relative risk (OR=9.1), the observed ORs were similar to the estimates observed in Gail's study. Incidence rates of breast cancer were extremely lower in Iran than in the USA, leading to a lower average absolute risk among the Iranian population (2.78, ±SD 2.45). The AUC was significantly improved after refitting the model, but it remained modest (0.636 vs. 0.627, ΔAUC = 0.009, bootstrapped P=0.008). We reported that the cut-point of 1.67 suggested in the Gail study did not discriminate between breast cancer patients and controls among the Iranian female population.
ConclusionAlthough the coefficients from the local study improved the discriminatory accuracy of the model, it remained modest. Cohort studies are warranted to evaluate the validity of the model for Iranian women.
Keywords: Breast neoplasms, Risk assessment, Models, Statistical, Logistic models -
زمینه و هدف
با بررسی ارتباط استرس شغلی و وضعیت سلامت جسمی و روانی کارکنان در محیط کار می توان اطلاعات ارزشمندی را در ارتباط با وضعیت سلامت جسمی و روانی کارکنان محیط کار ارایه داد که از این اطلاعات در راستای بهبود و ارتقا کیفیت کار در صنایع می توان استفاده نمود. در مطالعات متعددی اثر استرس بر مصرف چربی و قند در افراد مورد بررسی قرار گرفته است ولی به طور کلی مطالعات مربوط به بررسی ارتباط استرس شغلی و عوامل خطر سلامت بیشتر در گروههای شغلی غیرکارگری انجام شدهاند. همچنین در بین مطالعات انجام شده در ایران و سایر کشورهای در حال توسعه، هیچ مطالعهای به بررسی ارتباط استرس شغلی با چاقی در بین گروههای شاغل در صنایع نپرداخته و از اینرو ضرروت پرداختن به این موضوع احساس گردید. این مطالعه با هدف بررسی ارتباط استرس شغلی با چاقی در نمونهای بزرگ از کارکنان مرد کارخانه ذوب آهن اصفهان انجام گردید.تحقیق حاضر با هدف بررسی ارتباط استرس شغلی با چاقی در کارکنان ذوب آهن اصفهان انجام شده است.
روش بررسیدر یک مطالعه مقطعی در سال 1395 تعداد 2803 نفر از کارکنان مرد ذوب آهن اصفهان به روش نمونهگیری خوشهای تصادفی چند مرحلهای به صورت طبقه بندی انتخاب شدند. چاقی با استفاده از شاخص توده بدنی و استرس شغلی با استفاده از پرسشنامه 23 سوالی استرس شغلی اعتبار سنجی شده در ایران و اطلاعات جمعیت شناختی افراد با یک پرسشنامه خود ایفا مورد بررسی قرار گرفت. در این مطالعه متغیرهای عددی گزارشها به صورت میانگین±انحراف معیار و برای متغیرهای کیفی به صورت درصد گزارش گردید. نرمال بودن داده ها با آزمون کولموگروف- اسمیرنوف و نمودار Q-Q بررسی شد. مقایسه متغیرهای کمی با توزیع نرمال با استفاده از آزمون پارامتری تی استیودنت، متغیرهای کمی با توزیع غیرنرمال با آزمون ناپارامتری من-ویتنی و مقایسه توزیع متغیرهای کیفی در دو گروه نرمال و اضافه وزن/چاق با استفاده از آزمون کای اسکور انجام شد. در این پژوهش رابطه متغیر مستقل استرس شغلی (در سه رده: کم، متوسط و زیاد) و متغیر وابسته چاقی در دو سطح نرمال و اضافه وزن/چاق در چهار مدل در حضور متغیرهای مخدوشگر جمعیت شناختی، سبک زندگی و شغلی با استفاده از مدل رگرسیون لجستیک ارزیابی شد. نتایج رگرسیون لجستیک در قالب نسبت شانس (OR) و فاصله اطمینان 95 درصد (OR,95%CI) گزارش گردید. برای تجزیه و تحلیل داده ها از نرم افزار 22 SPSS استفاده گردید.
یافته هامیانگین سنی شرکت کنندگان 36/89 با انحراف معیار 7/35 سال بود.در این پژوهش استرس شغلی براساس نمره شاخص ER Ration به سه رده (ترتایل) دسته بندی شده است که ترتایل اول شامل نمرات استرس شغلی پایین، ترتایل دوم نمرات متوسط و ترتایل سوم نمرات بالا میباشد. همچنین افراد مورد بررسی براساس شاخص توده بدنی با 25≤BMI به گروه نرمال(1209= n) و افراد با 25 BMI≥ به گروه اضافه وزن/چاق(1593= n) دستهبندی شدند. در این مطالعه با افزایش استرس شغلی، شانس چاقی/اضافهوزن نیز افزایش یافت. به گونهای که بعد از تعدیل مجموعه مهمی از متغیرهای مخدوشگر رابطه مثبت و معناداری بین استرس شغلی بالا با چاقی/اضافهوزن مشاهده شد و شانس چاق بودن افراد دارای سطوح بالای استرس نسبت به افراد واقع در سطوح پایین استرس 19 درصد بیشتر بود (1/41-1/0395%CI: ,19/1(OR=.
نتیجه گیریمطالعه حاضر اطلاعات ارزشمندی را در مورد میزان استرس شغلی کارکنان صنعتی فراهم نمود و این نتیجه حاصل گردید که ارتباط معناداری بین استرس شغلی و چاقی وجود دارد؛ لذا برای بهبود وضعیت سلامت جسمی کارکنان باید به موضوع استرس شغلی توجه ویژهای داشت، به طوری که میبایست در بررسیهای دورهای وضعیت جسمی کارکنان شاغل در صنایع، استرس شغلی در اولویت قرار گیرد. از اینرو برگزاری کلاسهای آموزشی در خصوص کنترل و کاهش استرس، جلسات مشاوره روانشناسی، بکارگیری کارشناسان روانشناسی و تامین امنیت شغلی با توجه به زیرساختهای موجود، میتواند از اقدامات موثر در پیشبرد هدف کاهش استرس شغلی و بهبود وضعیت جسمی کارکنان باشد. بنابراین با مدیریت وضعیت استرس شغلی کارکنان صنایع از طریق کلاسهای آموزشی، جلسات مشاوره روانشناسی و تامین امنیت شغلی می توان در جهت بهبود شاخص های سلامت منجمله چاقی کارکنان اقدام نمود و در نتیجه بهره وری آنها را ارتقا داد.
کلید واژگان: استرس، چاقی، رگرسیون، مدل لجستیکIran Occupational Health, Volume:17 Issue: 1, 2020, PP 1137 -1147Background and aimsBy examining the relationship between job stress and the physical and mental health status of employees in the workplace, valuable information can be provided regarding the physical and mental health status of employees in the workplace, which can be used to improve the quality of work in industries. Can be used. In several studies, the effect of stress on fat and sugar consumption in individuals has been studied, but in general, studies on the relationship between job stress and health risk factors have been done more in non-working occupational groups. Also, among the studies conducted in Iran and other developing countries, no study has examined the relationship between job stress and obesity among groups working in the industry, and therefore the need to address this issue was felt. This study aimed to investigate the relationship between job stress and obesity in a large sample of male employees of Isfahan Steel Factory. The present study was conducted to investigate the relationship between job stress and obesity in Isfahan Steel employees.
MethodsIn a cross-sectional study in 2016, 2803 male employees of Isfahan Steel were selected by multi-stage random cluster sampling. Obesity was assessed using body mass index and job stress using a 23-item job stress questionnaire validated in Iran and demographic information of individuals with a self-administered questionnaire. In this study, the numerical variables of the reports were reported as the mean±SD(standard deviation) and for the qualitative variables as the percentage. The normality of the data was checked by the Kolmogorov-Smirnov test and Q-Q plot. Comparison of quantitative variables with normal distribution was performed using the parametric test, Studentchr(chr('39')39chr('39'))s t-test, quantitative variables with abnormal distribution with the non-parametric test, Mann-Whitney, and comparison of qualitative variables distribution in normal and overweight/obese groups were performed using Chi-square test. In this study, the relationship between the independent variable of job stress (in three categories: low, medium, and high) and the dependent variable of obesity at both normal and overweight/obese levels in four models in the presence of confounding variables of demographic, lifestyle and job using the model Logistic regression was evaluated. Logistic regression results were reported in the form of odds ratio(OR) and 95% confidence interval (OR, 95% CI). SPSS 22 software was used for data analysis.
ResultsThe mean age of participants was 36.89 with a standard deviation of 7.35 years. In this study, job stress is classified into three categories based on the ER Ration index score: the first third includes low job stress scores, the second third has average scores and The third trilogy is high scores. Also, the subjects were classified according to body mass index with BMI≤25 into the normal group (n=1209) and individuals with BMI≥25 into the overweight/obese group (n=1593). In this study, with increasing job stress, the chances of obesity/overweight also increased. After adjusting an important set of confounding variables, a positive and significant relationship was observed between high job stress and obesity/overweight, and the chance of obesity in people with high levels of job stress was 19% higher than those at low category (OR= 1.19, 95% CI: 1.03 – 1.41).
ConclusionThe present study provided valuable information about the level of job stress of industrial workers and concluded that there is a significant relationship between job stress and obesity; Therefore, in order to improve the physical health of employees, special attention should be paid to the issue of job stress, so that job stress should be given priority in periodic studies of the physical condition of employees working in industries. Therefore, holding training classes on stress control and reduction, psychological counseling sessions, employing psychologists, and providing job security with regard to the existing infrastructure, can be effective measures in advancing the goal of reducing job stress and improving the physical condition of employees. Therefore, by managing the job stress situation of industrial workers through training classes, psychological counseling sessions, and job security, we can take action to improve health indicators, including employee obesity, and thus increase their productivity.
Keywords: Stress, Obesity, Regression, Logistic Models -
Background
Alcohol use and drug injection are prevalent among homeless youths. The aim of this study wasto identify the associated factors of alcohol consumption and drug injection among homeless youths aged18-29 years.
MethodsData on 202 homeless youths (111 males and 91 females) were collected using a standardizedquestionnaire and face-to-face interview. Lasso logistic regression was applied to determine the impact ofassociated factors on alcohol consumption and drug injection.
FindingsThe mean age of the participants was 26.30 ± 3.19 years. Also, the prevalence of alcoholconsumption and drug injection was 33.0% [95% confidence interval (CI): 30-36] and 4.0% (95% CI: 0-8),respectively; 6 people (3.0%) consumed alcohol and injected drugs at the same time. Correlates of alcoholconsumption and drug injection were male sex [odds ratio (OR)Alc = 5.7], age (ORAlc = 0.96 and ORDI = 0.98),bachelor or higher education level (ORAlc = 1.34), non-Iranian nationality (ORAlc = 0.05 and ORDI = 0.18),food score (ORDI = 0.92), smoking (ORAlc = 2.05), substance use (ORAlc = 1.12), opposite sex relationship(ORAlc = 1.6), homosexual relationship (ORAlc = 3.56 and ORDI = 2.69), and mental disorder (ORAlc = 0.99).
ConclusionBased on our findings, it seems that the homeless youth are more desired to use alcohol and druginjection, whereas the prevalence of alcohol consumption and drug injection in homeless youth was higherthan general youth population in Iran. Therefore, some suitable solutions are needed to prevent thehomelessness. Also, the effective variables that were identified in this study for alcohol use and drug injectioncan help design and implement beneficial interventions.
Keywords: Homeless youth, alcohol drinking, Injections, Logistic models -
فصلنامه نوید نو، پیاپی 71 (پاییز 1398)، صص 30 -40مقدمه
یکی از مهم ترین دلایل مرگ و میر در جهان، بیماری های قلبی- عروقی هستند که در میان عوامل ایجاد کننده این بیماری ها، فشار خون و دیابت اهمیت بیشتری دارند. با توجه به همبستگی بالای این دو بیماری می توان عوامل مرتبط با ابتلای همزمان به آن ها را به طور دقیق مورد بررسی قرار داد. در این راستا، پژوهش حاضر با هدف به کارگیری مدل رگرسیون لجستیک دو متغیره در راستای تعیین عوامل مرتبط با ابتلا به دیابت و فشار خون بالا در افراد 65-35 ساله شهر مشهد انجام شد.
مواد و روش هامطالعه مقطعی- تحلیلی حاضر در ارتباط با فاز مقطعی داده های مطالعه مشهد انجام شد. متغیرهای مورد بررسی در این پژوهش عبارت بودند از: اطلاعات جمعیت شناختی، اشتغال، استعمال دخانیات، شاخص توده بدنی، میزان فعالیت فیزیکی، اضطراب، افسردگی، کلسترول، تری گلیسیرید و شاخص نسبت دور کمر به باسن. باید خاطرنشان ساخت که متغیرهای دیابت و پرفشاری خون به عنوان متغیرهای وابسته در نظر گرفته شدند. تجزیه و تحلیل ها داده ها نیز با استفاده از نرم افزار R3.4.4 در سطح معنا داری (05/0P<) صورت گرفت.
یافته هابراساس نتایج، ارتباط میان سن، سطح تحصیلات، شاخص توده بدنی، شاخص نسبت دور کمر به باسن، اضطراب، افسردگی، کلسترول و تری گلیسیرید با ابتلا به دیابت معنا دار بود (05/0P<). در ارتباط با فشار خون بالا نیز ارتباط سن، جنسیت، وضعیت اشتغال، شاخص توده بدنی، شاخص نسبت دور کمر به باسن، اضطراب، کلسترول و تری گلیسیرید معنا دار بود (05/0P<).
نتیجه گیریبر مبنای نتایج، استفاده از مدل دو متغیره به جای مدل های یک متغیره در شرایط وجود همبستگی به منظور دستیابی به نتایج دقیق تر پیشنهاد می شود. با توجه به اینکه بخش عمده ای از عوامل مرتبط، متغیرهای قابل کنترل مربوط به سبک زندگی بودند، بهتر است اقدامات در حوزه آموزش عمومی و پیشگیری در جهت ارتقای شیوه زندگی سالم در سطح جامعه معطوف گردند.
کلید واژگان: پرفشاری خون، تحلیل رگرسیون، بیماری های قلبی- عروقی، دیابت، مدل های رگرسیونیNavid no, Volume:22 Issue: 71, 2019, PP 30 -40IntroductionOne of the most important causes of death worldwide is cardiovascular diseases with blood pressure and diabetes as the leading causes of these diseases. Due to the high correlation between them, the associated factors can be more accurately investigated. Therefore, this study was conducted with the purpose of application of Bivariate Logistic Regression Model in the determination of factors associated with diabetes and hypertension among 35-65 years old people in Mashhad.
Materials and MethodsThis analytical cross-sectional study was performed on a cross-sectional phase of Mashhad study data. The variables included demographic information, employment status, smoking, BMI, physical activity, anxiety, depression, cholesterol, triglyceride, and waist to hip ratio (WHR). In this regard diabetes and high blood pressure were considered as dependent variables. Analyses were performed using R3.4.4 software at a significant level of P
ResultsThe results of the study revealed a significant relationship between diabetes and some variables such as, age, education level, BMI, WHR, anxiety, depression, cholesterol, and triglyceride (P <0.05). Furthermore, high blood pressure was found to be significantly associated with age, sex, employment status, BMI, WHR, anxiety, cholesterol, and triglyceride (P <0.05).
ConclusionIn terms of correlation, it is proposed to use a bivariate model instead of one-variable models to obtain more accurate results. Given that most of the relevant factors were controllable variables in lifestyle, it would be better to focus on the public education and prevention in order to promote a healthy lifestyle in the community.
Keywords: Cardiovascular diseases, Diabetes Mellitus, Hypertension, Logistic Models, Regression Analysis -
مدلبندی عوامل موثر بر ابتلا به بیماری فشارخون در افراد بالای 35 سال با استفاده از مدل رگرسیون لجستیکمقدمهفشارخون یکی از عوامل اصلی بیماری های قلبی- عروقی در جهان است. بنابراین شناسایی عوامل خطر این بیماری جهت اخذ سیاست های پیشگیرانه اهمیت می یابد. از این رو این مطالعه با هدف تعیین عوامل خطر ایجاد پرفشاری خون انجام شد.مواد و روش هادر این مطالعه مقطعی اطلاعات مربوط به 9761 نفر شرکت کننده 35-65 ساله از فاز مقطعی مطالعه مشهد در نظرگرفته شدند. متغیر های سن، جنس، شاخص توده بدنی، چربی خون با چگالی بالا، تری گلیسرید، سیگاری بودن و سابقه خانوادگی فشارخون در مطالعه بکارگرفته شدند. کلیه تحلیل ها با استفاده از نرم افزار SPSS v.22 انجام گرفت.یافته هاشرکت کنندگان شامل حدود 40 درصد مرد و 60 درصد زن بودند. در تحلیل رگرسیون لجستیک چند متغیره، متغیرهای سن (0/0001=P ،1/08=OR)، جنسیت (0/0001=P ،1/146=OR)، سیگاری بودن (0/0001=P ،1/536=OR)، چاقی (0/0001=P ،1/933=OR)، تری گلیسرید (0/0001=P ،1/004=OR) و سابقه خانوادگی فشارخون (0/0001=P ،1/296=OR)، معنی دار شناخته شدند.نتیجه گیریبا توجه به تکنیک رگرسیون لجستیک بکار برده شده در این مطالعه، سیگاری بودن، چاقی، بالا بودن مقدار تری گلیسرید خون و سابقه خانوادگی پرفشاری خون، عوامل مرتبط با فشارخون می باشند. بنابراین تغییر در سبک زندگی نقش مهمی را در پیشگیری از ابتلا به بیماری فشارخون و در نتیجه بیماری های قلبی- عروقی دارد.کلید واژگان: بیماری فشار خون، بیماری های قلبی و عروقی، تحلیل رگرسیون، مدل لجستیکIntroductionHypertension is a common cause of cardiovascular disease in the world. Therefore identification of risk factors for hypertension is essential to carry out preventive masseurs. So this study was done with the aim of using logistic regression model to determine and assess the risk factors of hypertension, in Mashhad.Materials & MethodsThis Cross sectional study was carried out using the records of individuals between 35-65 years old from cross sectional phase of MASHHAD study. Age, gender, BMI, Smoking status, Family history of hypertension, Triglycerides (TG), HDL entered the model.ResultsThe participants were 40% men and 60% female. The multivariate logistic regression model showed age (OR=1.080, P =0.0001), Gender (OR=1.146 , P =0.0001), Smoking(OR=1.536, P=0.0001), Fat (OR=1.933, P=0.0001), TG(OR=1.004, P=0.0001), Family history(OR=1.296, P=0.0001) to be significantly associated with increase in severity of hypertension in 0.01 significance level.ConclusionAccording to the logistic regression method used in this study, smoking, obesity, high triglycerides and family history of hypertension, are factors associated with hypertension. Therefore, change in lifestyle plays an important role in preventing hypertension and thus cardiovascular disease.Keywords: Hypertension, Cardiovascular Diseases, Regression Analysis, Logistic Models
-
Introduction
One of the most reliable sources of financing healthcare costs is healthinsurance. Covering all the services by basic health insurance is not affordable economically, so that some services are covered by supplementary health insurances. This study aimed to determine the factors influencing buying the different levels of Kowsar supplementary health insurance by the staff of Shiraz University of Medical Sciences in 2014-2015.
MethodsThis is a cross-sectional study. Two data collection forms were used to collect thedata. A sample size of 500 was determined using the rule of thumb. The individuals wereselected via using two-stage stratified and systematic sampling. To do the estimation, theordinal logistic regression model (link function was logit) was specified by the one-sidedsignificant variable tests at the first step. Then, the independent variables were examined by the link test, and the linear relationship among variables was also investigated. The software Excel 2010 and STATA 11.0 (stata corp LLC) were used in this paper.
ResultsThe findings showed that among the people with supplementary insurance, themajority were males (60%), married (85%), with the basic Tamin Ejtemaei insurance (72.3%). Among those who have not chosen the supplementary health insurance, the largest number were women (69%), unmarried (53%), and insured by Tamin Ejtemaei (80%), respectively. The findings suggest that some factors such as the age, gender, income and cost of insurance packages are the most influential factors on buying different levels of health care insurance. In the first model that included people with supplementary insurance, the income elasticity was significant and positive (Beta=3, P=0.047) and price elasticity of demand was negative (Beta=-0.06, P=0.001). In the second model that complemented those with and without supplementary insurance, the income elasticity was insignificant (Beta=2.46, P=0.085), and the demand price elasticity was negative (Beta=-0.06, P=0.001).
ConclusionThe economic factor seems to be the most influential factor in choosingsupplementary insurance. Since this problem causes the low-income households not to usethe insurance; therefore, the government is required to allocate some subsidies for low income household to be covered by supplementary health insurance for special services.
Keywords: Supplementary Health Insurances, None for Profit Insurance, Logistic Models, Health Financing -
ObjectiveGeneral medical degree (GMD) curriculum usually causes significant psychological distress for medical students, especially in transition periods between preclinical, clerkship, and internship periods. This study was conducted to assess the effect of curricular change in GMD program on mental health of medical students in internship period.MethodThis study evaluated mental health of 2 concurrent groups of medical students under reformed and non-reformed GMD curriculum. In this study, 120 out of 180 interns in the non-reform GMD program and 60 interns in the reformed GMD program were selected and their mental health status evaluated using Symptom Checklist-90-Revised (SCL-90-R) questionnaire. The cut-off point of 0.7 was used for Global Severity Index (GSI) score. SPSS software, version 14 (SPSS Inc, Chicago, Il, USA) was used for analysis. Chi-square, Fisher’s exact test, t student, Mann–Whitney U, one-way ANOVA, and Kruskal-Wallis tests were used when appropriate. Logistic regression was used to estimate odds ratios for various determinants of students’ mental health.ResultsAbout half of the participants in the 2 groups were male (P = 0.63), and the mean age of the students in the reformed and non-reformed programs was 24.8 (1.97) and 24.7(1.80), respectively (P = 0.9). About 20% of participants in the non-reformed and less than 2% of those in the reformed program had GSI score of more than 0.7. Medical students in the reformed program had lower scores in total GSI and 9 its dimensions (P<0.001). The results obtained from the logistic regression analysis indicated that reformed curriculum and good economic status were significant independent variables contributing to decreased psychological distress (OR = 0.016 and 0.11, respectively).ConclusionThe results revealed that curricular changes which were based on World Federation of Medical Education recommendation, could be associated with improvement in mental health status of medical students.Keywords: Curriculum, Education, Health Status, Logistic Models, Medical, Mental Disorders
-
Environmental Health Engineering and Management Journal, Volume:5 Issue: 4, Autumn 2018, PP 221 -229BackgroundThis retrospective study aimed to investigate the physicochemical properties of drinking water sources in Ethiopia and compare the water quality with the health-based target. For this purpose, the water quality database of Ethiopian Public Health Institute (EPHI) from 2010 to 2016 was used.MethodsThe concentration and other properties of the water samples were analyzed according to the Standard Methods of Water and Wastewater analysis. Quality control and quality assurance were applied in all stages following our laboratory standard operation procedures (SOPs).ResultsThe concentration of the selected parameters varied based on the type of water sources. The mean concentration of turbidity was higher in spring water (21.3 NTU) compared to tap (12.6 NTU) and well (3.9 NTU) water sources. The mean concentration of total dissolved solids (TDS), electrical conductivity (EC), sodium (Na+), and sulfate (SO4-2) was found to be higher in spring water sources than tap and well water sources. Comparably, the concentration of hardness, calcium, and magnesium was found to be higher in well water sources than spring and tap water sources. The bivariate analysis indicated that out of 845 analyzed water samples, more than 50% of the samples from Oromia region had turbidity, pH, TDS, hardness, Ca++, K+, and Na+ within an acceptable limit. In addition, the logistic regression analysis showed that water quality parameters were strongly associated with the type of water sources and regional administration at P < 0.05.ConclusionMore than 80% of the samples analyzed from drinking water sources were in agreement with WHO guidelines and national standards. However, the remaining 20% specifically, pH (25%), calcium (20%), hardness (18.1%), TDS (15.5%), and turbidity (13.3%) analyzed from improved water sources did not comply with these recommendations. Due to objectionable or unpleasant taste, people may force to look for alternative unprotected water sources that lead to health concerns.Keywords: Drinking water, Water quality, Water sources, Taste, Physicochemical properties, Retrospective study, Ethiopia, Logistic models
-
مجله دانشکده پزشکی دانشگاه علوم پزشکی تهران، سال هفتاد و ششم شماره 7 (پیاپی 211، مهر 1397)، صص 452 -458زمینه و هدفبا توجه به اینکه خطر ابتلا به دیابت در افراد پره دیابتیک بسیار بالا است، تعیین عوامل موثر بر پره دیابت دارای اهمیت می باشد. این مطالعه با هدف مقایسه نتایج مدل رگرسیون لجستیک معمولی و لجستیک نیرومند در مدل بندی عوامل مرتبط با بیماری پره دیابت انجام شد.روش بررسیاین مطالعه که از نوع مقطعی-تحلیلی است روی 6460 نفر از افراد بالای30 سال، شرکت کننده در طرح غربالگری دیابت دانشگاه علوم پزشکی مشهد، از مهر تا آذر 1389 انجام شد. با توجه به میزان قند خون ناشتای افراد، 5414 نفر سالم و 1046 نفر به عنوان پره دیابتیک شناسایی شدند. سن، جنس، نمایه توده بدن، فشار خون سیستولیک، فشار خون دیاستولیک و نسبت کمر به باسن در مورد هر فرد اندازه گیری شد. مدل رگرسیون لجستیک معمولی روی داده ها برازش شد. سپس داده های پرت مشخص و سه مدل نیرومند Mallow، WBY و BY برازش شد. آنگاه مدل ها با هم مقایسه گردیدند.یافته هامتغیرهای سن، نمایه توده بدن و فشار خون سیستولیک در همه مدل ها از لحاظ آماری معنادار شدند (0/01P<) و متغیر نسبت کمر به باسن معنادار نشد (0/1P>). تعداد 552 داده ی پرت با خطای بدرده بندی در مدل معمولی وجود داشت. مقادیر کای دو پیرسون و سطح زیرمنحنی راک در مدل Mallow به طور تقریبی فرقی با مدل معمولی نداشت. اما در مدل های WBY و BY به نسبت بیشتر بود.نتیجه گیریبا توجه به نتایج این پژوهش سن بالا، نمایه توده بدنی و فشار خون بالا در ابتلا به بیماری پره دیابت موثر می باشند. همچنین مدل های رگرسیون نیرومند WBY و BY برازش بهتر و توان پیشگویی بالاتری نسبت به رگرسیون لجستیک معمولی در مدل بندی عوامل گفته شده در ارتباط با پره دیابت دارند.کلید واژگان: نمایه توده بدنی، دیابت شیرین، مدل های لجستیک، مرحله پره دیابتBackgroundRegarding the increased risk of developing type 2 diabetes in pre-diabetic people, identifying pre-diabetes and determining of its risk factors seems so necessary. In this study, it is aimed to compare ordinary logistic regression and robust logistic regression models in modeling pre-diabetes risk factors.MethodsThis is a cross-sectional study and conducted on 6460 people, over 30 years old, who have participated in the screening of diabetes plan in Mashhad city that it was done by Mashhad University of Medical Sciences from October to December 2010. According to the fasting blood sugar criteria, 5414 individuals were identified as healthy and 1046 individuals were identified as pre-diabetic. Age, gender, body mass index, systolic blood pressure, diastolic blood pressure and waist-to-hip ratio were measured for every participant. The data was entered into the Microsoft Excel 2013 (Microsoft Corp., Redmond, WA, USA) and then analysis of the data was done in R Project for Statistical Computing, Version R 3.1.2 (www.r-project.org). Ordinary logistic regression model was fitted on the data. The outliers were identified. Then Mallow, WBY and BY robust logistic regression models were fitted on the data. And then, the robust models were compared with each other and with ordinary logistic regression model according to goodness of fit and prediction ability using Pearson's chi-square and area under the receiver operating characteristic (ROC) curve respectively.ResultsAmong the variables that were included in the ordinary logistic regression model and three robust logistic models, age, body mass index and systolic blood pressure were statistically significant (P< 0.01) but waist-to-hip ratio was not statistically significant (P> 0.1). There were 552 outliers with misclassification error in the ordinary logistic regression model. Pearson's chi-square value and area under the ROC curve value in the Mallow model were almost the same as for ordinary logistic regression model. But it was relatively higher in BY and WBY models.ConclusionBased on results of this study age, overweight and hypertension are risk factors of prediabetes. Also, WBY and BY models were better than ordinary logistic regression model, according to goodness of fit criteria and prediction abilityKeywords: body mass index, diabetes mellitus, logistic models, prediabetic state
-
BackgroundUS adolescent obesity rates have quadrupled over the past 3 decades. Research examining complex factors associated with obesity is limited.ObjectivesThe purpose of this study was to utilize a representative sample of students (grades 6 - 8) in Tennessee to determine the co-occurrence of risk behaviors with adolescent obesity prevalence and to analyze variations by strata. Patients and Methods: The 2010 youth risk behavior survey dataset was used to examine associations of obesity with variables related to sample demographics, risk and protective behaviors, and region. Hierarchical logistic regression analyses stratified by demographics and region were conducted to evaluate variation in obesity risk occurring on three hierarchical levels: class, school and district.ResultsThe sample consisted of 60715 subjects. The overall obesity rate was 22%. High prevalence of obesity existed in males, non-white race, those ever smoked and was positively correlated with age. Across three state regions, race, gender, and specific behaviors (smoking, weight misperception, disordered eating, +3 hours TV viewing, and no sports team participation) persisted as significant predictors of adolescent obesity, although variations by region and demographics were observed. Multilevel analyses indicate that < 1%, 0 - 1.97% and 4.03 - 13.06% of the variation in obesity was associated with district, school and class differences, respectively, when stratifying the sample by demographic characteristics or region.ConclusionsUniform school-based prevention efforts targeting adolescent obesity risk may have limited impact if they fail to respond to geographical and demographic nuances that hierarchal modeling can detect. Study results reveal that stratified hierarchical analytic approaches to examine adolescent obesity risk have tremendous potential to elucidate significant prevention insights.Keywords: Adolescents, Obesity, Health Risk Behaviors, Hierarchical, Logistic Models, Regression Analysis
-
سابقه و هدفنارسایی حاد کلیه علاوه بر افزایش موربیدیتی و مورتالیتی، باعث افزایش مدت بستری در بیمارستان و افزایش هزینه درمانی می گردد. این مطالعه با هدف بررسی شیوع نارسایی حاد کلیوی در بیماران پس از جراحی قلب باز (CABG) انجام پذیرفت.مواد و روش هادر این مطالعه توصیفی، اطلاعات مربوط به پرونده 400 بیمار تحت عمل جراحی CABG مراجعه کننده به بیمارستان تخصصی قلب فاطمه زهرا ساری از سال 1392 تا سال 1395، مورد بررسی قرار گرفت و روش نمونه گیری تصادفی ساده بوده است. میزان کراتینین مربوط به 24 ساعت قبل و بعد از عمل جراحی با استفاده از چک لیست جمع آوری شد. داده ها با استفاده از نرم افزار SPSS20 و با روش رگرسیون لجستیک مورد تجزیه و تحلیل قرار گرفتند.یافته هااز بین 400 بیمار جراحی شده، 59 درصد مرد و 41 درصد زن بودند و میانگین سن بیماران 05/9± 61 سال بوده است. میزان شیوع نارسایی حاد کلیوی پس از عمل 5/13 درصد محاسبه گردید. براساس نتایج مدل رگرسیون لجستیک تک متغیره، بین متغیرهای جنسیت (0001>p، 71/5 = OR)، مصرف سیگار (006/0 = p، 497/3 = OR)، BMI (034/0 = p، 023/3 = OR ) و BUN (009/0 = p، 026/3 = OR ) با آسیب حاد کلیوی ارتباط معنی داری وجود داشت.
استنتاج: براساس نتایج، فاکتورهای سن، جنسیت، مصرف سیگار، نیتروژن اوره خون و BMIجزو عوامل مرتبط با شیوع AKI پس از عمل جراحی بای پس قلبی می باشند.کلید واژگان: نارسایی حاد کلیوی، جراحی بای پس عروق کرونری، شیوع، رگرسیون لجستیکBackground andPurposeAcute kidney failure is one of the major problems around the world. It increases the rate of morbidity and mortality, and also leads to increased hospitalization time and health care costs. This study aimed at investigating the prevalence of acute kidney failure following coronary artery bypass grafting (CABG).Materials And MethodsIn a descriptive study, 400 medical records of CABG cases in Mazandaran Herat Center (2013-2016) were studied using random sampling. Creatinine levels of 24 hours before and after the surgery were recorded in a checklist. Data were analyzed in SPSS V20 applying Logistic Regression Analysis.ResultsThe patients studied included 59% males and 41% females. The mean age of patients was 61±9.05 years. The prevalence of acute renal failure was 13.5% following CABG. Based on univariate regression, gender (OR = 5.71, PConclusionIn this study, age, sex, smoking, BUN levels and BMI were associated with the incidence of acute kidney failure after CABG.Keywords: acute kidney injury, coronary artery bypass, prevalence, logistic models -
مقدمهتابع پاسخ همودینامیک، منعکس کننده جریان خون مغزی در پاسخ به فعالیت های عصبی نقش مهمی در تجزیه و تحلیل اطلاعات مغزی به دست آمده توسط تصویربرداری تشدید مغناطیسی عملکردی دارد. در این مطالعه مقایسه دو مدل آماری جهت ارزیابی تابع پاسخ همودینامیک به روش بلوکی انجام گردیده است.مواد و روش هاداده های تصویربرداری تشدید مغناطیسی عملکردی از 3 بیمار مبتلا به تومور مغزی در یک اسکنر 3 تسلا گرفته شد. تجزیه و تحلیل داده های تصویربرداری تشدید مغناطیسی عملکردی با استفاده از جعبه ابزار SPM12 در نرم افزار MATLAB انجام شد. شاخص های AIC، SBC و MSE جهت انتخاب بهترین مدل تابع پاسخ همودینامیک مورد استفاده قرار گرفتند.یافته هابر اساس داده های شبیه سازی، تابع پاسخ همودینامیک برآورد شده توسط مدل تابع پاسخ همودینامیک کانونی به علاوه مشتقات زمانی تطابق بیشتری با تابع پاسخ همودینامیک شبیه سازی شده داشت. این مدل ها بر روی داده های واقعی بررسی شد. شاخص های MSE، AIC و SBC برای مدل های تابع پاسخ همودینامیک کانونی به علاوه مشتقات زمانی و لجستیک معکوس (برای مدل های تابع پاسخ همودینامیک کانونی به علاوه مشتقات زمانی و لجستیک معکوس به ترتیب: 0/052، 1235/1، 1223/9 و 0/068، 1091/5-، 1049/5-) به دست آمد. بر اساس مقادیر متوسط T، W، H و شاخص های انتخاب مدل، لجستیک معکوس جهت برآورد تابع پاسخ همودینامیک در نواحی سالم مغز و تومور مغزی مدل مناسب تری می باشد.نتیجه گیرینتایج مطالعه حاضر می تواند جهت بررسی و تشخیص تابع پاسخ همودینامیک در نقاط با متابولیسم بالا کمک کننده باشد. استفاده از مدل لجستیک معکوس جهت برآورد تابع پاسخ همودینامیک در روش بلوکی به بهتر برآورد شدن تابع پاسخ همودینامیک و در نتیجه حفظ سلامت بیمار و کیفیت زندگی پس از عمل جراحی و روش های غیر جراحی پزشکی منجر می شود.کلید واژگان: تصویربرداری تشدید مغناطیسی، مدل لجستیک، مغزIntroductionThe hemodynamic response function (HRF), reflecting cerebral blood flow in response to neural activity, plays a crucial role in the analysis of the brain data obtained by functional magnetic resonance imaging (fMRI). In this study, a comparison of two statistical models was performed to evaluate HRF for block design.Materials And MethodsfMRI data from 3 patients with brain tumor were taken using a 3 Tesla scanner. Analysis of fMRI data was performed by the SPM12 toolbox in MATLAB software. The AIC, SBC and MSE indices were used to select the most convenient HRF mode.ResultsBased on the simulation data, HRF estimated by canonical HRF model plus time derivations (TD) model was more consistent with simulated HRF. These models were evaluated on real data. The MSE, AIC and SBC indices were obtained for TD-logistic model (IL) models (for TD and logistic IL models; 0.052 /, 1235.1, 1223.9 and 0.068 / -1091.5 / - 1049.2, respectively). Based on the average values of T, W, H and model selection indicators, IL model for estimating HRF in healthy regions of the brain and brain tumor is a more appropriate approach.ConclusionThe results of the present study can be helpful for the evaluation and diagnosis of HRF in high-metabolism points. Using the IL model to estimate HRF in the block design may lead to a better estimation of HRF and thus maintaining patient health and quality of life after surgical treatment and non-surgical medical procedures.Keywords: Magnetic Resonance Imaging, Logistic Models, Brain
-
Awareness of the food security status of rural population and its influencing factors is essential for policy makers, public health institutions and the development of rural programs. This descriptive cross-sectional study was conducted in 2017 on 384 rural households in Bam city. The data was collected via the 6-item USDA questionnaire. Logistic regression was used to determine the relationship between social, economic and health factors with food security. The results indicate that 35.67% of households had full food security status, 24.47% had medium food security status and 7.04% had food insecurity status. Despite the high level of food insecurity in Bam rural households, creating employment opportunities for increasing household income, reforming inappropriate food habits, and increasing households nutritional awareness might be effective in promoting food security.Keywords: Coping strategy index, Food security, Logistic models, Rural population
-
BackgroundSince injury-related mortality is preventable, identifying factors that inversely affect trauma outcome are important initial steps towards reducing injury burden..ObjectivesThis study aims to determine independent risk factors of early/late in-hospital mortality among adult trauma victims with equal injury characteristics and severity at Shahid Rajaee (Emtiaz) Hospital during 2013 and 2014..
Patients andMethodsA cross-sectional study of adult trauma patients (age ≥ 15 years) sustaining injury through traffic accidents, violence, and unintentional incidents was conducted. Information was retrieved from three hospital administrative databases. Data on demographics, injury mechanisms, injured body regions, injury descriptions, outcomes of hospitalization, and development of nosocomial infections were recorded. Injury severity score was calculated by cross walking from international classification of diseases (ICD-10) injury diagnosis codes to abbreviated injury scale (AIS-98) severity codes. Two multiple logistic regression models were employed to reflect the partial effect of each covariate on early (within 48 hours) and late (beyond 48 hours) deaths..ResultsThere were 47,295 hospitalized patients (male/female ratio: 2.7:1.0) with a median age of 30 years (interquartile range 23 - 44 years). A crude mortality rate of 1% (454 cases) was observed and 52% of deaths occurred within 48 hours of hospital arrival. One percent developed a nosocomial infection in the course of admission. After adjusting for covariates, sustaining a thoracic injury (OR 8.5, 95% CI [4.7 - 15.2]), ISS over 16 (OR 6.4, 95% CI [3.6 - 11.4]) and age over 65 years (OR 5.1, 95% CI [3.0 - 8.8]) were the most important independent risk factors of early trauma death. Presence of a hospital-acquired infection (OR 12.7, 95% CI [8.9 - 18.1]), age over 65 years (OR 7.4 95% CI [4.5 - 12.1]), and ISS of more than 16 (OR 14.6, 95% CI [6.2 - 34.3]) were independent predictors of late death..ConclusionsAge, injury severity, injured body region, and hospital-acquired infections are important determinants of trauma outcome in our center. Timely recognition of factors affecting trauma mortality is crucial for monitoring changes of trauma quality of care. Our findings suggest the need to allocate resources for trauma prevention along with a potential focus on reducing in-hospital complications..Keywords: In-hospital Mortality, Risk Factors, Injury Severity Score, Logistic Models, Nosocomial Infection -
BackgroundFamily physician plans in Iran face several challenges, one of which is developing attractive and efficient contracts that motivate physicians to participate in the plan.ObjectivesThis study aimed to elicit GPs preferences for family physician contracts.
Patients andMethodsIn a cross-sectional study using the conjoint analysis technique, 580 GPs selected from the family physician database in Iran in 2014. Through qualitative and quantitative methods, 18 contract scenarios were developed via orthogonal design i.e., the impact of each attribute is measured independently from changes in other attributes and a questionnaire was developed. Data were collected through this questionnaire and analyzed using the ordered logistic regression (OLR) model.ResultsThe results show that quotas for admission to specialized courses is the strongest preference of GPs (β = 1.123). In order of importance, the other preferences are having the right to provide services outside of the specified package (β = 0.962), increased number of covered population (β = 0.814), capitation payment 15% bonus (β = 0.644), increased catchment area to 5 km (β = 0.349), and increased length of contract to five years (β = 0.345).ConclusionsThe conjoint analysis results show that GPs concerned about various factors of family physician contracts. These results can be helpful for policy-makers as they complete the process of creating family physician plans, which can help increase the motivation of GPs to participate in the plan.Keywords: General Practitioners, Contracts, logistic Models, Iran
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.