به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "missing data" در نشریات گروه "پزشکی"

  • Behrouz Fathi Vajargah, Ahmad Nouraldin

    This article aims to compare the efficiency of different imputation methods with missing data. In this way we use mean, median, Expected-Maximization (EM), regression imputation(RI) and multiple imputations (MI) to replace missing data.In fact, we employ three proposed combination methods, namely EM imputation with MI imputation (EMMI), EM imputation with regression imputation (EMR), and regression imputation with MIimputation (MI). In this paper, we compare these methods using an example study of Waterborne Container Trade by the US Customs Port (2000-2017) where the methods with different missing percent-ages. Several criteria, are used to compare estimations efficiency, such as mean, Standard Deviation (SD), and Mean Squared Error (MSE). The results show that the efficiency of composite imputation methods in almost all situations, in terms of MSE, RMI imputation method outperforms other methods. Nevertheless, when the missing percentage is small, the EMR imputation method performs better. In terms of the SD criterion, we find that the MI method is better than the other methods, where the RMI method is good when the missing percentage is large. When the missing percentage is in the range (40-50%), the EMR and RMI imputation methods give a better MSE.

    Keywords: Missing Data, Imputation, Mean Square Error, Standard Deviation
  • Tahereh Rohani, Karimollah Hajian-Tilaki*, Mahmoud Hajiahmadi, Behzad Heidari, Natali Rahimi Rahimabadi, Zahra Geraili
    Background

    Diabetes, a currently threatening disease, has severe consequences for individuals’ health conditions. The present study aimed to investigate the factors affecting the changes in the longitudinal outcome of blood sugar using a three-level analysis with the presence of missing data in diabetic patients.

    Methods

    A total of 526 diabetic patients were followed longitudinally selected from the annual data collected from the rural population monitored by Tonekabon health centers in the North of Iran during 2018-2019 from the Iranian Integrated Health System (SIB) database. In analyzing this longitudinal data, the three-level model (level 1: observation (time), level 2: subject, level 3: health center) was carried out with multiple imputations of possible missing values in longitudinal data.

    Results

    Results of fitting the three-level model indicated that every unit of change in the body mass index (BMI) significantly increased the fasting blood sugar by an average of 0.5 mg/dl (p=0.024). The impact of level 1 (observations) was insignificant in the three-level model. Still, the random effect of level 3 (healthcare centers) showed a highly significant measure for health centers (14.62, p<0.001).

    Conclusion

    The BMI reduction, the healthcare centers' socioeconomic status, and the health services provided have potential effects in controlling diabetes.

    Keywords: Blood Sugar Change, Diabetic Patients, Body Mass Index, Health Care Centers, Three-Level Model, Missing Data, FCS Imputation Algorithm, Longitudinal Data
  • Natthapat Thongsak, Nuanpan Lawson
    Introduction

    Chiang Mai’s air pollution has risen to number one in the world for the highest level of fine particulate matter which further exacerbates the damage to human health. Fine particulate matter can enter the human body and blood circulation, destroying organ systems, increasing the risk for chronic disease and cancer, despite not having smoking habits or other morbidities. The Thai government must sort out this issue before it is too late as the whole nation’s health is at risk due to excessive dust levels higher than standard guidelines. Collection of pollution data can help us to come up with solutions and prevent it from turning into a hazardous situation. Unfortunately, pollution data are missing and need to be dealt with before analysis to obtain accurate results.

    Materials and methods

    A new method of imputation for estimating population mean based on a transformed variable has been suggested under simple random sampling without replacement and the uniform nonresponse mechanism. The bias and mean square error of the proposed estimator are investigated up to the first order of approximation. The performance of the proposed estimator is studied via applications to air pollution data in Chiang Mai, Thailand.

    Results

    The proposed estimator shows the best performance, giving the least bias and mean square error for all levels of sampling fractions. For the results from application the estimated value of sulfur dioxide from Particulate Matter 2.5 (PM2.5), the Percentage Relative Efficiency (PRE) is higher than all existing estimators by at least 16%. For the estimated PM2.5 from PM10 the PRE is higher than all existing estimators by at least 1600%, an extremely significant difference exhibiting similarity to real values.

    Conclusion

    The proposed imputation technique based on the transformed auxiliary variable can be helpful for imputing missing values and improving the efficiency of the estimators.

    Keywords: Imputation method, Missing data, Transformed variable, Air pollution data, Mean square error
  • Hamid Akramifard*, Mohammad AliBalafar, Seyed NaserRazavi, Abd Rahman Ramli
    Background

    A timely diagnosis of Alzheimer’s disease (AD) is crucial to obtain more practical treatments. In this article, a novel approach using Auto-Encoder Neural Networks (AENN) for early detection of AD was proposed.

    Method

    The proposed method mainly deals with the classification of multimodal data and the imputation of missing data. The data under study involve the MiniMental State Examination, magnetic resonance imaging, positron emission tomography, cerebrospinal fluid data, and personal information. Natural logarithm was used for normalizing the data. The Auto-Encoder Neural Networks was used for imputing missing data. Principal component analysis algorithm was used for reducing dimensionality of data. Support Vector Machine (SVM) was used as classifier. The proposed method was evaluated using Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Then, 10fold crossvalidation was used to audit the detection accuracy of the method.

    Results

    The effectiveness of the proposed approach was studied under several scenarios considering 705 cases of ADNI database. In three binary classification problems, that is AD vs. normal controls (NCs), mild cognitive impairment (MCI) vs. NC, and MCI vs. AD, we obtained the accuracies of 95.57%, 83.01%, and 78.67%, respectively.

    Conclusion

    Experimental results revealed that the proposed method significantly outperformed most of the stateoftheart methods.

    Keywords: Alzheimer’s disease, autoencoders, cerebrospinal fluid, early detection, magneticresonance imaging, Mini‑Mental State Examination, missing data, positron emission tomography
  • Mahmoud Hajipour, Kobra Etminani, Zahra Rahmatinejad, Maryam Soltani, Koorosh Etemad, Saeid Eslami, Amin Golabpour*
    Background

    Due to the thalassemia severe complications, prediction of mortality or patients survival has a great importance in early treatment phases. This study purpose was to predict the mortality rate of patients with thalassemia major and thalassemia intermedia, by the use of the binary logistic regression algorithm and genetic algorithm combination.

    Methods

    This retrospective cohort study was conducted on 909 thalassemia patients by using a questionnaire during 2004-2014. The data of all patients referring to Imam Reza Hospital from 2004 to 2014 have been considered. This study predictive variable is considered to be death or survival of the patient. In this research, we embedded the missing data by the use of the proposed data mining model and MICE algorithm. Totally, 100 patients were excluded from this research, due to the missing or out-of-range data. Death was considered as dependent variable. Also, a predictive model was designed in order to
    predict the patient mortality using MATLAB language.

    Results

    Mean age of the thalassemia patients was 25.7±9.04 years old and at the end of the study death was reported in 185 subjects. Additionally, there were also 26 independent variables. Moreover, the missing variables mean for each patient was 1.8±0.81. The combined predictive model was able to predict the patient survival rate with 94.35% accuracy. In this research, it was found out that 26 independent variables, which were collected from 12 variables were patient mortality predictors. Also, missing data imputation is an important method for increasing the data mining algorithms efficiency.

    Conclusions

    According to this study results, the use of missing algorithm with the data analysis aid yielded more accurate results, in comparison with the MICE algorithm. Furthermore, 12 parameters affected the patient mortality prediction, which were extracted by the genetic algorithm. Accuracy of the predictive model for the patient death detection was favorable. Consequently, it is recommended to use this model in order to predict the patient mortality.

    Keywords: Thalassemia, Regression, Missing data, Data mining
  • حسین فلاح زاده، فرزانه صابری *، آزاده نجارزاده، زهرا صابری
    مقدمه
    مطالعه حاضر با هدف جا نهی داده های گمشده و همچنین مقایسه اثر دوزهای مختلف مکمل ویتامین D بر مقاومت به انسولین در دوران بارداری انجام شد.
    روش بررسی
    یک مطالعه کارآزمایی بالینی بر روی 104 زن باردار مبتلا به دیابت با سن بارداری کمتر از 12 هفته طی سالهای 1391 الی 1393 انجام شد.این افراد به طور تصادفی به سه گروه تقسیم شده اند. زنان بارداری که روزانه IU200 ویتامین D دریافت کرده اند(گروه A)، زنانی که ماهانه IU 50000 ویتامین Dدریافت کرده اند(گروهB) و گروه C، زنانی هستند که هر دو هفته یکبار IU 50000 ویتامین D دریافت کرده اند. در روش تجزیه و تحلیل داده های مطالعه دو حالت یکبار در حضور داده های گمشده و بار دیگر بدون حضور داده های گمشده را مدنظر قرار دادیم. در این مطالعه با در نظر گرفتن مکانیسم MCAR، 4 روش جانهی، جانهی میانگین، جانهی تصادفی کلی بی درنگ، جانهی تصادفی بی درنگ درون رده ای و نهایتا« جانهی نزدیکترین همسایگی بر روی داده های گمشده انجام شد.
    یافته ها
    در این مطالعه، در روش جانهی تصادفی کلی بی درنگ، متغیرهای اختلاف قند خون واختلاف مقاومت به انسولین نرمال نیستند ودر جدول میانه ودامنه میان چارکی آن ها گزارش شد.همچنین برای مقایسه 3 گروه برای این متغیرها از آزمون کروسکال والیس استفاده شد. در روش جانهی نزدیکترین همسایگی متغیراختلاف مقاومت به انسولین نرمال نشد و برای این متغیر هم به همین ترتیب میانه و دامنه میان چارکی گزارش شد و برای مقایسه 3 گروه آن از آزمون کروسکال والیس استفاده شد.همچنین شاخص دلتا برای تمامی روش های جانهی محاسبه شد.
    نتیجه گیری
    در این مقاله به منظور ارزیابی و مقایسه روش های جانهی، شاخص دلتا محاسبه شد. روش جانهی تصادفی کلی بی درنگ به عنوان بهترین روش جانهی بیان شد.
    این مقاله بخشی از پایان نامه دانشجوی کارشناسی ارشد آمارزیستی، دانشکده بهداشت، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی یزد است.
    کلید واژگان: جانهی, جانهی بی درنگ, گم شدگی کاملاتصادفی, گم شدگی تصادفی, گم شدگی غیرتصادفی
    Hosien Fallahzade Professor, Farzaneh Saberi Miss *, Azade Najjarzade Assistant Professor, Zahra Saberi Assistant Professor
    Introduction
    The aim of this study was to impute missing data and to compare the effect of different doses of vitamin D supplementation on insulin resistance during pregnancy.
    Methods
    A clinical trial study was done on 104 women with diabetes and gestational age less than 12 weeks between 1391 and 1393. These subjects were randomly divided into three groups; pregnant women who received daily 200 IU vitamin D (group A), women where receiving monthly 50,000 IU vitamin D (Group B) and Group C are women who received 50,000 IU vitamins D every two weeks. In order to investigate the effect of missing data, the data were studied in two ways, with and without considering missing data. To analyze data in the presence of missing observations, the mechanism of MCAR is considered as the missing mechanism. Then, in order to impute the missing data, four methods including mean imputation, random overall hot-deck imputation, within-class random hot-deck imputation and nearest neighbor imputation was used.
    Results
    In this study, in random overall hot-deck imputation, the difference between blood sugar and insulin resistance variables are not normal, so median and their interquartile range were reported in the table. Furthermore, kruskal-wallis test was used to compare 3 groups variables. The difference insulin resistance variable was not normal in the nearest neighbor imputation method, so the median and interquartile range was reported in the table. In addition, the kruskal-wallis test was used to compare 3 groups of data. The delta index was calculated for all imputation methods.
    Conclusion
    In this study, delta index was calculated to evaluate and to compare imputation methods. The random overall hot-deck imputation was described as the best imputation method.
    Keywords: Insulin resistance, Gestational Diabetes, Missing data, Imputation, Hot –deck Imputation, Missing Completely at Random, .Missing at Random, Missing Not at Random
  • مینا محمدی، معصومه صادقی، لیلا جانانی*
    زمینه و هدف
    مطالعات کارآزمایی بالینی تصادفی شده (RCT) معمولا از دو مشکل عدم تبعیت و گمشدگی پیامد مطالعه صدمه می بینند. یکی از راه حل های بالقوه برای رفع این مشکلات، استفاده از رویکرد تحلیل با قصد درمان (ITT) می باشد. لذا هدف از این مطالعه، مروری بر مفهوم ITT و مهم ترین مباحث مرتبط با آن در عمل است، تا محققان پژوهش های RCT به عنوان راهنمایی در جهت بهبود کیفیت مطالعات RCT از آن بهره گیرند.
    روش بررسی
    این مطالعه یک بررسی مروری است که با استفاده از منابع موجود و تحلیل مطالب انجام یافته است. بدین منظور جستجوی مقالات و کتب مرتبط با موضوع در بانک های اطلاعاتی Ovid/Medline، SCOPUS، Web of Science ،Google Scholar و Magiran انجام گرفت. در این راستا از کلمات کلیدی شامل Intention-to-treat analysis ، randomized controlled trials ، randomized clinical trial ، as-treated ، ITT ، per-protocol analysis استفاده گردید.
    یافته ها
    مزایای استفاده از ITT ، نقد تحلیل به قصد درمان، جایگزین های تحلیل به قصد درمان و محدودیت های هر یک، داده های گم شده و مدیریت آن ها در مطالعات کارآزمایی بالینی در این مقاله مورد بحث قرار گرفته است.
    نتیجه گیری
    رویکرد ITT به دلیل پای بند بودن به اصل تصادفی سازی باعث محافظت مطالعات کارآزمایی بالینی از مخدوش کنندگی و تورش شده و منجر به تولید بالاترین سطح مدارک و شواهد علمی در حوزه تحقیقات بالینی می شود. مناسب است این رویکرد به عنوان یک راهبرد در کلیه مراحل پژوهش اعم از طراحی مطالعه، اجرا و تجزیه و تحلیل داده ها مدنظر قرار گیرد و نباید آن را صرفا یک رویکرد آماری تلقی نمود.
    کلید واژگان: تحلیل به قصد درمان, کارآزمایی بالینی تصادفی شده, تحلیل براساس طرح از پیش تعیین شده, داده های گم شده
    Mina Mohammady, Masoumeh Sadeghi, Leila Janani *
    Background and Aim
    Randomized controlled trials often suffer from two major problems, i.e., noncompliance and missing outcomes. One potential solution to this problem is using the intention-to-treat (ITT) analysis approach. Therefore, the aim of this study was to review the concept of ITT and the most important issues related to it in practice since RCT researchers utilize it as a guide in order to improve the quality of RCT studies.
    Methods & Materials: A review study was performed using available resources and comprehensive analysis. For this purpose, we searched the relevant articles in databases including Ovid/Medline, SCOPUS, Web of Science, Google scholar and Magiran. The key words that were used included randomized clinical trials, randomized controlled trials, intention-to-treat analysis, per-protocol analysis, ITT, as-treated.
    Results
    The advantages of ITT, the critique of ITT, the alternatives of ITT and their limitations, missing data and their management in clinical trial studies were discussed in this paper.
    Conclusion
    ITT approach, due to its adherence to the principles of randomization, protects clinical trials from confounding and bias and therefore leads to the generation of the highest quality scientific evidence in the clinical research field. ITT should be considered a strategy at all stages of research, including the design of study, implementation and data analysis, and it should not be considered only a statistical approach.
    Keywords: intention to treat analysis, randomized clinical trials, pre-protocol analysis, missing data
  • علیرضا افشاری صفوی، حسین کاظم زاده قره چبق، منصور رضایی
    مقدمه و اهداف
    داده های گمشده، چالش بزرگی در پژوهش ها به شمار می آیند. به فراخور نوع مطالعه و نوع متغیرهای مورد بررسی، روش های گوناگونی برای کار با این داده ها تا کنون معرفی شده است. هدف این مطالعه مقایسه پنج روش جانهی متداول در برخورد با گمشدگی در داده های پرسشنامه ای بود.
    روش کار
    در این مطالعه تعداد500 پرسشنامه مربوط به خوددرمانی در بیماران دیابتی مورد استفاده قرار گرفت. گمشدگی در مشاهده ها به صورت تصنعی و با انتخاب تصادفی سوالاتسوالات و سپس حذف آن ها تولید شد. پنج روش جانهی عبارت بودند از: 1- میانگین سوالاتسوالات؛ 2- میانگین فردی؛ 3- نمای فردی؛ 4- رگرسیون خطی؛ و 5- الگوریتم EM. برای هر روش میانگین و انحراف معیار نمرات جانهی شده با مقادیر اصلی مقایسه گردید. هم چنین ضریب همبستگی اسپیرمن، درصد دسته بندی اشتباه و آماره کاپا نیز محاسبه شد.
    یافته ها
    مقدار آماره کاپای بالاتر از 81/0 برای سطح گمشدگی 10 درصد بیانگر توافق تقریبا کامل در این سطح از گمشدگی بود. الگوریتم EM بالاترین میزان توافق با نتایج داده های واقعی را با مقدار آماره کاپای 886/0 نشان داد. هم چنین با افزایش میزان گمشدگی اطلاعات به 30 درصد، الگوریتم EM و روش میانگین فردی با مقدار کاپای 697/0 و 687/0از توافق نسبتا مشابهی برخوردار بودند.
    نتیجه گیری
    در این مطالعه الگوریتم EM دقیق ترین روش برای کار با داده های گمشده در تمام الگوهای مورد ارزیابی شناخته شد. روش میانگین فردی به دلیل سادگی کار با داده های گمشده به ویژه برای بیش تر خوانندگان غیرآماری می تواند مورد توجه قرار گیرد.
    کلید واژگان: الگوریتم EM, داده های گمشده, دیابت, خوددرمانی, آماره کاپا, رگرسیون
    A. Afshari Safavi, H. Kazemzadeh Gharechobogh, M. Rezaei
    Background And Objectives
    Missing data is a big challenge in the research. According to the type of the study and of the variables, different ways have been proposed to work with these data. This study compared five popular imputation approaches in addressing missing data in the questionnaires.
    Methods
    In this study, 500 questionnaires were used for self-medication in diabetic patients. Missing in the observations was artificially generated by random selection of questions and then deleting them. Five imputation ways included: 1) the mean of the questions, 2) the mean of the person, 3) the mode of the person, 4) linear regression, and 5) EM algorithm. For each method, the mean and standard deviation were compared with imputation. The Spearman correlation coefficient, the percentage of incorrectly classified and kappa statistic were also calculated.
    Results
    A kappa higher than 0.81 represented almost perfect agreement at 10% missingness. The EM algorithm showed the highest level of agreement with the results of actual data with a Kappa of 0.886. With increasing missingness to 30%, the EM algorithm and the mean of the person showed a rather similar agreement with a Kappa of 0.697 and 0.687, respectively.
    Conclusion
    In this study, the EM algorithm was the most accurate method for handling missing data in all models. The mean of the person method is easy for handling missing data, especially for most non statisticians.
    Keywords: Algorithm EM, Missing data, Diabetes, Self, treatment, Kappa statistics, Regression
  • پریسا رضا نژاد اصل، مصطفی حسینی، سمانه افتخاری، محمود محمودی، کرامت الله نوری*
    مقدمه و اهداف
    از مطالعات طولی برای بررسی تاثیر درمان در بسیاری از تحقیقات روان شناسی و روان پزشکی استفاده می شود. مهم ترین مشخصه مطالعات طولی، اندازه گیری های مکرر از بیماران در طول زمان می باشد، نظر به این که مشاهده های مربوط به یک بیمار از یکدیگر مستقل نیستند؛ بنابراین برای تحلیل این داده ها باید از روش های ویژه آماری استفاده شود. هم چنین داده های گم شده جزء اجتناب ناپذیر اغلب مطالعات طولی می باشند که بر اثر بی پاسخی واحد نمونه گیری رخ می دهند. از آن جایی که گم شدگی منجر به کاهش دقت محاسبات آماری و ایجاد اریبی در نتایج حاصل می شود، بررسی روش های برخورد با آن اهمیت زیادی دارد. هدف از این مطالعه، بررسی اثر درمان جامع بر عملکرد اجتماعی- فردی بیماران مبتلا به مرحله اول سایکوز با استفاده از روش های آماری مناسب می باشد.
    روش کار
    داده های این مطالعه از یک کارآزمایی بالینی و مربوط به بیمارانی است که در سال های 87-1385 به درمانگاه ها یا اورژانس روانپزشکی بیماراستان روزبه مراجعه کرده اند. برای تحلیل پاسخ های رتبه ای طولی با گم شدگی غیریکنوا این مطالعه از مدل ضرایب تصادفی در نرم افزار R نسخه 2.15.0 استفاده کردیم.
    نتایج
    نتایج برآورد پارامترهای مدل ضرایب تصادفی با پاسخ های گم شده غیریکنوا و در نظر گرفتن مکانیسم گم شدگی تصادفی، نشان می دهد، درمان جامع با پیگیری در منزل، سن و سابقه ی بیماری در خانواده اثر معنی داری بر عملکرد اجتماعی- فردی بیماران دارند. برآورد ضریب متغیر سن وخطای معیار آن به ترتیب 0/05 و 0/03، برآورد ضریب متغیر سابقه ی بیماری 0/82- و خطای معیار آن 0/41 می باشد و ضریب متغیر درمان جامع با پیگیری درمنزل 1/04- و خطای معیار آن 0/44 برآورد شد.
    نتیجه گیری
    مدل به کار گرفته شده در این مطالعه، نشان می دهد که درمان جامع با پیگیری در منزل، مناسب تر است. زیرا افراد تحت این نوع درمان شانس بیش تری برای داشتن عملکرد اجتماعی- فردی بیشتر دارند.
    کلید واژگان: مطالعه طولی, داده های گم شده, پاسخ رتبه ای, مدل ضرایب تصادفی, مرحله اول سایکوز
    P. Rezanejad Asl, M. Hosseini, S. Eftekhary, M. Mahmoodi, K. Nouri *
    Background and Objectives
    Longitudinal studies are used in many psychiatric researches to evaluate the effectiveness of treatment. The main characteristic of longitudinal studies is repeated measurements of the patients over time. Since observations from the same patient are not independent from each other, especial statistical methods must be used for analyzing the data. Missing data is an indispensable component in longitudinal. In this study, we examined the effect of comprehensive treatment on social-individual performance in patients with the first episode of psychosis.
    Methods
    The data was from a clinical trial involving patients who were admitted to the clinics of Roozbeh Hospital between 2006_2008. We employed a random effect model for the analysis of longitudinal ordinal responses with non-monotone missingness using the R software version 3.0.2.
    Results
    The results showed that comprehensive treatment with follow-up at home, age, and family history of the disease had a significant effect on the social-individual performance of the patients. The estimation of the coefficient of age and its standard deviation were 0.05 and 0.03, respectively. The estimation of the coefficient of family history of the disease was -0.82 with a standard deviation of 0.41, and the coefficient of comprehensive treatment with follow-up at home and its standard deviation, were estimated -1.04 and 0.44, respectively.
    Conclusion
    The model used in this study showed that the comprehensive treatment with follow-up at home was better because individuals under this type of treatment are more likely to have social-individual performance.
    Keywords: Longitudinal study, Missing data, Order response, Random effect model, First, episode psychosis
  • Saiedeh Haji, Maghsoudi, Ali Akbar Haghdoost, Mohammad Reza Baneshi
    Background
    Prisoners, compared to the general population, are at greater risk of infection. Drug injection is the main route of HIV transmission, in particular in Iran. What would be of interest is to determine variables that govern drug injection among prisoners. However, one of the issues that challenge model building is incomplete national data sets. In this paper, we addressed the process of model development when missing data exist.
    Methods
    Complete data on 2720 prisoners was available. A logistic regression model was fitted and served as gold standard. We then randomly omitted 20%, and 50% of data. Missing date were imputed 10 times, applying multiple imputation by chained equations (MICE). Rubin’s rule (RR) was applied to select candidate variables and to combine the results across imputed data sets. In S1, S2, and S3 methods, variables retained significant in one, five, and ten imputed data sets and were candidate for the multifactorial model. Two weighting approaches were also applied.
    Findings
    Age of onset of drug use, recent use of drug before imprisonment, being single, and length of imprisonment were significantly associated with drug injection among prisoners. All variable selection schemes were able to detect significance of these variables.
    Conclusion
    We have seen that the performances of easier variable selection methods were comparable with RR. This indicates that the screening step can be used to select candidate variables for the multifactorial model.
    Keywords: Missing data, Multiple imputation, Drug injection, Prison, Variable selection
  • Saiedeh Haji-Maghsoudi, Ali-Akbar Haghdoost, Azam Rastegari, Mohammad Reza Baneshi
    Background
    Policy makers need models to be able to detect groups at high risk of HIV infection. Incomplete records and dirty data are frequently seen in national data sets. Presence of missing data challenges the practice of model development. Several studies suggested that performance of imputation methods is acceptable when missing rate is moderate. One of the issues which was of less concern, to be addressed here, is the role of the pattern of missing data.
    Methods
    We used information of 2720 prisoners. Results derived from fitting regression model to whole data were served as gold standard. Missing data were then generated so that 10%, 20% and 50% of data were lost. In scenario 1, we generated missing values, at above rates, in one variable which was significant in gold model (age). In scenario 2, a small proportion of each of independent variable was dropped out. Four imputation methods, under different Event Per Variable (EPV) values, were compared in terms of selection of important variables and parameter estimation.
    Results
    In scenario 2, bias in estimates was low and performances of all methods for handing missing data were similar. All methods at all missing rates were able to detect significance of age. In scenario 1, biases in estimations were increased, in particular at 50% missing rate. Here at EPVs of 10 and 5, imputation methods failed to capture effect of age.
    Conclusion
    In scenario 2, all imputation methods at all missing rates, were able to detect age as being significant. This was not the case in scenario 1. Our results showed that performance of imputation methods depends on the pattern of missing data.
    Keywords: Missing Data, Mice, Expectation Maximum Algorithm, Drug Injection, National Data
  • Alireza Akbarzadeh Baghban, Erfan Ghasemi, Farid Zayeri, Saeed Asgary, Mahshid Namdari
    In interventional or observational longitudinal studies, the issue of missing values is one of the main concepts that should be investigated. The researcher's main concerns are the impact of missing data on the final results of the study and the appropriate methods that missing values should be handled. Regarding the role and the scale of the variable that missing values have been occurred and the structure of missing values, different methods for analysis have been presented. In this article, the impact of missing values on a binary response variable, in a longitudinal clinical trial with three follow up sessions has been investigated Propensity Score, Predictive Model Based and Mahalanobis imputation strategies with complete case and available data methods have been used for dealing with missing values in the mentioned study. Three models; Random intercept, Marginal GEE and Marginalized Random effects models were implemented to evaluate the effect of covariates. The percentage of missing responses in each of the treatment groups, throughout the course of the study, differs from 6.8 to 14.1. Although, the estimate of variance component in random intercept and marginalized random effect models were highly significant (p <0.001) the same results were obtained for the effect of independent variables on the response variable with different imputation strategies. In our study according to the low missing percentage, there were no considerable differences between different methods that were used for handling missing data.
    Keywords: Missing data, Longitudinal study, Binary response, Multiple imputation
  • فرید زایری، علیرضا اکبرزاده باغبان، مژگان کاظم زاده، حمید احمدیه، منصور شهریاری
    مقدمه
    در این مطالعه مقایسه دو درمان تزریق داخل زجاجیه ای بواسیزوماب به تنهایی و یا به همراه تریامسینولون بر حسب داده های یک کارآزمایی بالینی تصادفی با استفاده از مدل گزینش برای گمشدگی های آگاهی بخش، صورت گرفت.
    مواد و روش ها
    مدل سازی داده ها در این مطالعه بر اساس اطلاعات 90 بیمار مبتلا به استحاله وابسته به سن ماکولا با یکی از انواع CNV، که قبل از شروع این کارآزمایی بالینی درمانی دریافت نکرده بودند، انجام شد. بیماران به صورت تصادفی در دو گروه تزریق داخل زجاجیه ای بواسیزوماب(اواستین) به تنهایی یا توام با تریامسینولون قرار گرفتند. مدل گزینش(برای گمشدگی های آگاهی بخش)، جهت مقایسه اثر درمان های مورد نظر برای این بیماران، با حذف اثر سایر متغیرهای مخدوش گر، برازش داده شد. پیامدهای اصلی مورد بررسی، بهترین دید اصلاح شده و میزان ضخامت مرکزی ماکولا بودند.
    یافته های پژوهش: مدل گزینش برای گمشده های آگاهی بخش، کاهش ضخامت مرکزی ماکولا در تزریق بیواسیزوماب همراه با تریامسینولون را به طور معنی داری بیشتر از کاهش این ضخامت در تزریق بیوسیزوماب به تنهایی گزارش کرد(P=0.026). اثر گروه درمانی بر بهبود بهترین دید اصلاح شده نیز معنی دار بود.(P=0.017)
    بحث و نتیجه گیری
    در بیماران مبتلا به AMD مرطوب، تزریق داخی زجاجیه ای بیواسیزوماب همراه با تریامسینولون نسبت به تزریق بیواسیزوماب به تنهایی، به طور معنی داری در بهبود دید بیماران و کاهش ضخامت مرکزی ماکولا موثرتر است.
    کلید واژگان: استحاله وابسته به سن ماکولا, تزریق داخی زجاجیه ای بیواسیزوماب, تریامسینولون, داده های گمشده, مدل گزینش
    F. Zayeri, Ar Akbarzadeh Baghban, M. Kazemzadeh, H. Ahmadieh, M. Shahriari
    Introduction
    In the study، the intravitreal bevacizumab injection treatment alone and in combination with triamcinolone، acco-rding to the data obtained from a rando-mized clinical trial using selection model for informative missingness، were comp-ared.
    Materials and Methods
    In the current study، the modeling was executed on 90 patients with age-related macular degeneration (AMD) having a variety of choroidal neovascularization (CNV) lesions. They had not got any treatment before the beginning of the clinical trials. The patients were randomly assigned into two groups: Intravitreal bevacizumab injection alone and in combination with triamcinolone. To compare the effects of these treatments on these patients، the selection model (for informative missingness) was fitted with the elimination of other covariates. Two major outcomes investigated in this study، were the variation of best-corrected visual acuity (BCVA) and variation of central macular thickness (CMT).
    Findings
    The results of selection model for informative missingness revealed that the reduction in CMT in intravitreal bevaciz-umab injection combined with triamcino-lone was more significant than its reduction in intravitreal bevacizumab injection alone (P=0. 026). Discussion &
    Conclusion
    In patients with neovascular AMD، intravitreal bevacizum-ab injection in combination with triamcino-lone significantly leads to better BCVA and lower CMT than intravitreal bevacizumab injection alone.
    Keywords: Age, related macular degene, ration, Intravitreal bevacizumab injection, Triamcinolone, Missing data, Selection model
  • Mr Baneshi, A. Talei
    Background
    Prognostic models have clinical appeal to aid therapeutic decision making. Two main practical challenges in development of such models are assessment of validity of models and imputation of missing data. In this study, importance of imputation of missing data and application of bootstrap technique in development, simplification, and assessment of internal validity of a prognostic model is highlighted.
    Methods
    Overall, 310 breast cancer patients were recruited. Missing data were imputed 10 times. Then to deal with sensitivity of the model due to small changes in the data (internal validity), 100 bootstrap samples were drawn from each of 10 imputed data sets leading to 1000 samples. A Cox regression model was fitted to each of 1000 samples. Only variables retained in more than 50% of samples were used in development of final model.
    Results
    Four variables retained significant in more than 50% (i.e. 500 samples) of bootstrap samples; tumour size (91%), tumour grade (64%), history of benign breast disease (77%), and age at diagnosis (59%). Tumour size was the strongest predictor with inclusion frequency exceeding 90%. Number of deliveries was correlated with age at diagnosis (r=0.35, P<0.001). These two variables together retained significant in more than 90% of samples.
    Conclusion
    We addressed two important methodological issues using a cohort of breast cancer patients. The algorithm combines multiple imputation of missing data and bootstrapping and has the potential to be applied in all kind of regression modelling exercises so as to address internal validity of models.
    Keywords: Missing data, Multiple imputation, Bootstrap, Breast neoplasm, Internal validity
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال