جستجوی مقالات مرتبط با کلیدواژه "neurons" در نشریات گروه "پزشکی"
-
مقدمه
انتقال دهنده های عصبی از نورون ها آزاد شده و ارتباطات عصبی را ایجاد می کنند. این مواد نقش مهمی در تشکیل و اتصالات سیستم عصبی دارند. مقدار انتقال دهنده عصبی همزمان با تشکیل سیناپس افزایش می یابد. ارتباط عصبی با کمک تعداد زیادی سیناپس به همراه انواع مختلف انتقال دهنده های عصبی صورت می گیرد. انتقال دهنده های عصبی را می توان به عنوان مواد شیمیایی آزاد شده از نورون ها که بر روی گیرنده های خاص عمل می کنند، تعریف کرد. این مواد می توانند در مقادیر زیادی در طی مراحل خاصی از رشد بیان شوند، اما پس از آن تنها در چند سیناپس باقی می مانند. در این مطالعه، انواع انتقال دهنده های عصبی و مکانیسم های مولکولی دخیل در ترشح آن ها را مرور می کنیم و اهمیت این موضوع را تاثیرات آن ها بر اختلالات عصبی شرح می دهیم.
نتیجه گیریمطالعه انتقال دهنده های عصبی و مسیرهای مولکولی درگیر در تولید و آزادسازی آن ها می تواند در درمان و پیشگیری بالقوه اختلالات عصبی موثر باشد.
کلید واژگان: نورون ها, سیناپس ها, سیستم عصبیIntroductionNeurotransmitters are released from neurons and establish neural connections. These substances play an important role in the formation and connections of the nervous system. The amount of neurotransmitter increases at the same time as the synapse is formed. Neural communication is carried out with the help of a large number of synapses along with various types of neurotransmitters. Neurotransmitters can be defined as chemicals released from neurons that act on specific receptors. These substances can be expressed in large amounts during certain stages of development, but then remain in only a few synapses. In this study, we will review the types of neurotransmitters and the molecular mechanisms involved in their secretion, describing the importance of this topic in understanding and addressing neurological disorders.
ConclusionStudying neurotransmitters and the molecular pathways involved in their production and release can be instrumental in treating and potentially preventing neurological disorders.
Keywords: Neurons, Synapses, Nervous System -
Background
As the repair capacity of the nervous system is low, stem cell therapy is a trend for replacement therapy. Dental pulp stem cells (DPSCs) have the potential to differentiate into many tissues, such as neurons. Harmine (7-methoxy-1methyl-9H-pyrido[3,4-b] indole) is an alkaloidal component of medicinal plants with a long history in traditional medicine. Alginate is a biocompatible hydrogel widely used as a biomaterial base in various scaffolds.
ObjectivesThis study investigated whether harmine and encapsulation of cells in alginate hydrogel could improve DPSCs differentiation into neural cells.
MethodsDPSCs were cultured under standard stem cell culture conditions, then encapsulated in alginate hydrogel, and treated with differentiation medium with and without harmine. After 14 days, cell proliferation and differentiation were assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, real-time polymerase chain reaction (RT-PCR), and flow cytometry.
ResultsHarmine (5 and 10 M) significantly increased the proliferation and viability of DPSCs compared to the control group in both two-dimensional and three-dimensional culture systems (P < 0.05). The expression levels of three neural cell markers (nestin, microtubule-associated protein [MAP-2], and -tubulin III) in DPSCs-derived neural cells cultured in two-dimensional and three-dimensional culture systems were significantly increased in harmine-treated two-dimensionalandthree-dimensional culture systems compared to the control group (P < 0.05).
ConclusionsEither harmine or alginate hydrogel had an accelerating effect on DPSCs differentiation into neural cells. Harmine also increased the proliferation of the cells.
Keywords: Alginate, Cell Differentiation, Dental Pulp, Harmine, Hydrogels, Neurons, Stem Cells -
Background
Glutamate, an excitatory neurotransmitter, plays a pivotal role in cellular phenomena in neurons, like synaptic plasticity and excitotoxicity. As the major glutamate receptors, N-methylD-aspartate receptors (NMDARs) undergo phosphorylation at Ser1303 on the GluN2B subunit upon glutamate binding. This effect results from the influx of calcium and subsequent activation of many known kinases that phosphorylate the receptor. However, the regulation of this phosphorylation at this site and the involved phosphatases have remained unknown, especially under excitotoxicity conditions induced by glutamate treatment.
ObjectivesThis study attempts to investigate the regulation of phosphorylation at GluN2B-Ser1303 under excitotoxic conditions and identify the phosphatase responsible.
Materials & MethodsPrimary cortical neurons prepared from embryonic rat brains were treated with glutamate, thereby inducing excitotoxicity in vitro. Then, the phosphorylation status of GluN2B-Ser1303 was studied using Western blots in the presence of various phosphatase inhibitors. Finally, the interaction of phosphatase with GluN2B was studied using immunostaining and coimmunoprecipitation analysis.
ResultsThe results show that under excitotoxic conditions, there is a reduction in the phosphorylation of GluN2B-Ser1303, and protein phosphatase 1 (PP1) was the phosphatase responsible. PPI was found to interact with the receptor.
ConclusionThis study reports for the first time the regulation of phosphorylation at GluN2BSer1303 in vitro under excitotoxic conditions, which PP1 mediates. This site could be a potential drug target for designing novel compounds which could exacerbate excitotoxicity.
Keywords: Glutamic acid, Phosphorylation, Neurons, GluN2B-Ser1303, Excitotoxicity -
سابقه و هدف
همزمان با رشد پایدار جمعیت، استفاده گسترده از قارچ کش های سیستمیکی که منجر به افزایش بهره وری و بازدهی بیشتر محصولات غذایی گردد، بسیار مورد توجه قرار گرفته است. لذا با توجه به اثرات سیتوتوکسیک قارچ کش های سیستمیک تری سیکلازول و تیوفانات متیل مطالعه حاضر با هدف بررسی سمیت عصبی ناشی از مصرف قارچ کش های تری سیکلازول (TCZ) و تیوفانات متیل (TM) در موش های صحرایی نژاد ویستار انجام شد.
مواد و روش هادر این مطالعه تجربی 32 سر موش صحرایی نر نژاد ویستار به طور تصادفی به 4 گروه هشت تایی شامل: گروه کنترل، گروه های دریافت کننده مخلوط های آفت کش به صورت خوراکی با دوزهای (A) TM 664 + TCZ 25، (B) TM 498 + TCZ 19 و (C) TM 332 + TCZ 13 (میلی گرم بر کیلوگرم وزن بدن) تقسیم شدند و پس از 28 روز نمونه برداری از بافت مغز صورت پذیرفت. به منظور بررسی های کیفی ضایعات پاتولوژیکی و شمارش کمی سلول های مغزی از رنگ آمیزی نیسل و هماتوکسیلین-ایوزین استفاده گردید.
یافته هادر بررسی های هیستوپاتولوژیکی گروه های دریافت کننده سموم، نکروزه شدن نورون ها، افزایش سلول های میکروگلیا در ناحیه هیپوکامپ و قشر مغز، مشاهده گردید. نتایج حاصل از شمارش سلولی مشخص کننده کمترین تعداد نورون در گروه A در ناحیه قشر مغز (4/88±171/40)، CA1 (5/99±152/80)، CA2,3 (8/36±127/90) و CA4 (3/86±59/20) بود که کاهش معنی داری را نسبت به گروه کنترل نشان داد (0/05>p).
نتیجه گیرینتایج مطالعه نشان داد که ترکیب تری سیکلازول و تیوفانات متیل باعث آسیب نورون های مغزی در قشر مغز و نواحی مختلف هیپوکامپ و به دنبال آن باعث کاهش تعداد نورون های این نواحی گردید؛ که البته میزان آسیب ها با افزایش دوز رابطه مستقیم داشت.
کلید واژگان: تری سیکلازول, تیوفانات متیل, هیپوکامپ, نورون ها, هیستوپاتولوژیBackground and ObjectiveAlong with the steady growth of the population, the widespread use of systemic fungicides, which leads to increased productivity and higher yield of food products, has been given a lot of attention. Therefore, considering the cytotoxic effects of systemic fungicides tricyclazole and thiophanate methyl, the present study was conducted with the aim of investigating the neurotoxicity caused by the use of fungicides tricyclazole (TCZ) and thiophanate methyl (TM) in Wistar rats.
MethodsIn this experimental study, 32 male Wistar rats were randomly divided into 4 groups of 8 including: control group, groups receiving pesticide mixtures orally at doses of (A) TM 664 + TCZ 25, (B) TM 498 + TCZ 19 and (C) TM 332 + TCZ 13 (mg/kg body weight) and brain tissue sampling was done after 28 days. Nissl and hematoxylin-eosin staining were used for qualitative assessment of pathological lesions and quantitative counting of brain cells.
FindingsIn the histopathological examinations of the groups that received toxins, it was observed that the neurons became necrotic, and the increase of microglia cells in the hippocampus and cerebral cortex was also observed. The results of cell counting indicated the lowest number of neurons in group A in the cerebral cortex (171.40±4.88), CA1 (152.80±5.99), CA2,3 (127.90±8.36) and CA4 (59.20±3.86), which showed a significant decrease compared to the control group (p<0.05).
ConclusionThe results of the study showed that the mixture of tricyclazole and thiophanate methyl caused damage to brain neurons in the cerebral cortex and different areas of the hippocampus and subsequently caused a decrease in the number of neurons in these areas; Of course, the amount of damage was directly related to increase in the dose.
Keywords: Tricyclazole, Thiophanate Methyl, Hippocampus, Neurons, Histopathology -
Background
CA1, as a major structure involved in learning and memory, has been shown to be affected by tramadol addiction. Both orexin and endocannabinoid receptors express in CA1 and play an important role in drug dependency. The aim of this study was to evaluate the modulatory effects of orexin‑2 (OX2R) and endocannabinoid‑1 (CB1R) receptors on neuronal activity in CA1, in response to tramadol in rats.
Materials and MethodsMale Wistar rats were divided into 8 groups (n = 6–7); saline‑dimethyl sulfoxide (DMSO), tramadol‑DMSO, saline‑TCS‑OX2‑29, saline‑AM251, tramadol‑TCS‑OX2‑29, tramadol‑AM251, saline‑TCS‑OX2‑29‑AM251, tramadol‑TCS‑OX2‑29‑AM251. Tramadol was injected intraperitoneally, and then, AM251 (1 nmol/0.3 μL), CB1R antagonist and TCS‑OX2‑29 (1 nmol/0.3 μL), OX2R antagonist, were microinjected individually or concurrently into the CA1. Using in vivo extracellular single‑unit recording, the firing of CA1 pyramidal neurons was investigated.
ResultsTramadol decreased neuronal activity in CA1 (P < 0.01) but increased it after micro‑injection of DMSO. TCS‑OX2‑29 increased neuronal activity in saline group (P < 0.05) but decreased it in tramadol group. AM251 had no effect on saline group but decreased neuronal activity in tramadol group (P < 0.05). Concurrent micro‑injection of TCS‑OX2‑29 and AM251 had no effect on saline group but decreased neuronal activity in tramadol group (P < 0.05).
ConclusionsOur findings suggest that neural activity in CA1 is rapidly affected by acute use of tramadol, and some of these effects may be induced through the endocannabinoid and orexin systems. Thus, the function of endocannabinoid and orexin systems in CA1 may play a role in tramadol addiction.
Keywords: Cannabinoids, electrophysiology, hippocampus, neurons, orexin receptors, tramadol -
Background
Tramadol is an opioid analgesic with monoamine reuptake inhibitory effects. Although tramadol has been widely used to control pain, there is controversy about the risk of abuse. Therefore, in the present study, the acute effects of tramadol on neuronal activity in the medial prefrontal cortex (mPFC), which is one of the important centers of the reward system, were investigated electrophysiologically.
Materials and MethodsTramadol was injected interperitoneally (12.5 and 25 mk/kg) or subcutaneously (40 mg/kg) and its effect on the firing of mPFC neurons was investigated, using in vivo extracellular single unit recording.
ResultsTramadol could not significantly affect neural activity in mPFC, suggesting no acute and rapid effect on mPFC.
ConclusionsThe present results showed that neural activity in mPFC was not rapidly affected by acute application of tramadol. Since the role of mPFC in tramadol addiction has been elucidated, it can be concluded that these effects may be due to delayed responses or chronic use of tramadol.
Keywords: Electrophysiology, neurons, prefrontal cortex, tramadol -
Background
A wide variety of cytokines are released from human amniotic membrane cells (hAMCs), which can increase the rate of differentiation of mesenchymal stem cells into the neurons. We studied the effect of Retinoic Acid (RA) on the differentiation rate of human Umbilical Cord Mesenchymal Stem Cells (hUMSCs) which were co-cultured with hAMCs.
MethodsIn this experimental study, both hUMSCs and hAMCs were isolated from postpartum human umbilical cords and placenta respectively. The expression of mesenchymal (CD73, CD90 and CD105), hematopoietic and endothelial (CD34 and CD45) markers in hUMSCs were confirmed by flow cytometry. The hUMSCs were cultured in four distinct groups: group 1) Control, group 2) Co-culture with hAMCs, group 3) RA treatment and group 4) Co-culture with hAMCs treated by RA. Twelve days after culturing, the expression of NSE, MAP2 and ChAT differentiation genes and their related proteins were examined by real-time PCR and immunocytochemistry respectively.
ResultsThe flow-cytometry analysis indicated increased expression of mesenchymal markers and a low expression of both hematopoietic and endothelial markers (CD73:98.24%, CD90: 97.32%, CD105: 90.75%, CD34: 2.96%, and CD45:1.74%). Moreover, the expression of both NSE and MAP2 markers was increased significantly in all studied groups in comparison to the control group On the other hand, the expression of ChAT had a significant increase in the group 2 and 4 (RA and RA+ co-culture).
ConclusionRA can be used as an effective inducer to differentiate hUMSCs into cholinergic-like cells, and hAMCs could increase the number of differentiated cells as an effective factor.
Keywords: Amniotic Membrane, Cell Differentiation, Mesenchymal Stem Cell, Neurons, Retinoic acid -
مجله دانشکده پزشکی دانشگاه علوم پزشکی تهران، سال هفتاد و نهم شماره 6 (پیاپی 246، شهریور 1400)، صص 407 -417
ثبت فعالیت های الکتروفیزیولوژیکی نورون های مغزی در نیم قرن اخیر به عنوان یکی از ابزارهای کارآمد توسعه علوم اعصاب مطرح بوده است. از جمله تکنیک هایی که برای ثبت فعالیت سلول های عصبی به کار می رود، استفاده از آرایه های چند الکترودی است. آرایه های چند الکترودی یک پلت فرم بالقوه برای مطالعه الکتروفیزیولوژی سلولی است و برای ثبت عملکرد در بلندمدت و غیرتهاجمی بودن مشهور هستند. این آرایه ها شامل آرایه ای از الکترودها با ابعاد میکرومتری و نانومتری هستند و برای تحریک و ثبت پتانسیل عمل سلولی طراحی شده اند که به کمک فناوری های ریزماشین کاری ساخته می شوند. فلزاتی مانند طلا و پلاتین به دلیل هدایت الکتریکی زیاد و زیست سازگاری برای ساخت آرایه های چند الکترودی استفاده می شوند. با وجود رشد سریع، آرایه های چند الکترودی کنونی برای کاربردهای عصبی، هنوز با محدودیت هایی مانند نسبت سیگنال به نویز پایین و قدرت تفکیک فضایی کم روبرو هستند. برای دستیابی به وضوح مکانی بهتر و سطح نویز کمتر و در نتیجه سیگنال دقیق تر، نیاز به توسعه آرایه هایی با اندازه کوچکتر و امپدانس کمتر وجود دارد. در این میان، نانوساختارهای گوناگون مانند گرافن، نانولوله های کربنی و نانوذرات طلا با توجه به خواص جالب توجهی که دارند، تبدیل به کاندیدهای جذابی برای این کاربرد شده اند. در این مقاله، تکنولوژی آرایه های چند الکترودی، نحوه عملکرد و قسمت های مختلف آن معرفی شده و در نهایت چالش ها و پیشرفت های پیش روی این حوزه مورد بررسی قرار گرفته اند. فناوری آرایه های چند الکترودی برای تحقیقات علوم اعصاب، تجزیه و تحلیل شبکه های عصبی، مطالعه اثرات دارو و مطالعات پروتزهای عصبی استفاده می شود.
کلید واژگان: پتانسیل عمل, الکتروفیزیولوژی, الکترودهای مینیاتوری, نانوساختارها, نورونMulti-electrode arrays technology for the non-invasive recording of neural signals: a review articleThe recording of electrophysiological activities of brain neurons in the last half-century has been considered as one of the effective tools for the development of neuroscience. One of the techniques for recording the activity of nerve cells is the multi-electrode arrays (MEAs). Microelectrode arrays (MEAs) are usually employed to record electrical signals from electrogenic cells like neurons or cardiomyocytes. MEAs consist of an array of planar or three-dimensional electrodes that act as electrical interfaces and record cellular signals or stimulate cells. These platforms can be used in different applications including neuroscience studies, prostheses and rehabilitation, deep brain stimulation (DBS), cardiac pacemakers, retinal and cochlear implants, or for brain-computer interfaces (BCI) in general. Multi-electrode arrays are known as long-term recording and non-invasive devices. The MEA structure includes arrays of electrodes with micrometer and nanometer dimensions which are designed to stimulate and record the electrical activity of cells, and are fabricated using micromachining technologies. MEAs should be biocompatible to serve as a substrate for cell growth. On the other hand, they must have low impedance to be able to provide a high signal-to-noise ratio, and small size to offer a suitable spatial resolution for recording. MEAs are usually fabricated on glass substrates patterned with high-conductivity metals such as gold, iridium or platinum, which are insulated with a biocompatible layer. Despite fast progress, current multi-electrode arrays for neural applications still face limitations such as low signal-to-noise ratio and spatial resolution. To achieve better spatial resolution and lower noise levels and therefore more accurate signal, it is necessary to develop arrays with smaller sizes and lower impedance. Meanwhile, many nanostructures such as graphene, carbon nanotubes, gold nanoparticles, and also conductive polymers have become attractive candidates for this application due to their interesting properties. In this paper, the technology of multi-electrode arrays, how it works and its various parts are introduced, and finally, the challenges and developments in this field are investigated. Multi-electrode array technology is used for neuroscience research, neural network analysis, drug effects screening, and neural prosthesis studies.
Keywords: action potential, electrophysiology, miniaturized electrode, nanostructures, neurons -
Objective(s)The mechanisms of rabies evasion and immunological interactions with the host defense have not been completely elucidated. Here, we evaluated the dynamic changes in the number of astrocytes, microglial and neuronal cells in the brain following intramuscular (IM) and intracerebral (IC) inoculations of street rabies virus (SRV).Materials and MethodsThe SRV isolated from a jackal and CVS-11 were used to establish infection in NMRI-female mice. The number of astrocytes (by expression of GFAP), microglial (by Iba1), and neuronal cells (by MAP-2) in the brain following IM and IC inoculations of SRV were evaluated by immunohistochemistry and H & E staining 7 to 30 days post-infection.ResultsIncreased numbers of astrocytes and microglial cells in dead mice infected by SRV via both IC and IM routes were recorded. The number of neuronal cells in surviving mice was decreased only in IC-infected mice, while in the dead group, this number was decreased by both routes.The risk of death in SRV-infected mice was approximately 3 times higher than in the CVS-11 group. In IC-inoculated mice, viral dilution was the only influential factor in mortality, while the type of strain demonstrated a significant impact on the mortality rate in IM inoculations.ConclusionOur results suggested that microglial cells and their inflammatory cytokines may not contribute to the neuroprotection and recovery in surviving mice following intracerebral inoculation of SRV. An unexpected decrease in MAP2 expression via intramuscular inoculation indicates the imbalance in the integrity and stability of neuronal cytoskeleton which aggravates rabies infection.Keywords: Astrocyte, Intracerebral, Intramuscular, Microglia cells, Neurons, Street rabies virus
-
Objective(s)
To elucidate the mechanism of Respiratory Syncytial Virus (RSV) infection and central neuronal disease and to understand the role of microglia in neuronal injuries during RSV infection.
Materials and MethodsThe effects of RSV and the cytokines produced by RSV-infected CHME-5 microglial cells on SY5Y neuronal cells were evaluated based on an in vitro Transwell coculture system. Five treatment groups were established in this study, including the normal control SY5Y group, RSV+SY5Y infection group, (cytokine+CHME-5)+SY5Y Transwell group, (RSV+CHME-5)+SY5Y Transwell group, and (RSV+cytokine+CHME-5)+SY5Y Transwell group. The morphological and physical alterations in SY5Y cells and their synapses were analyzed by confocal microscopy. The mRNA and protein expression levels of TLR3/RIG-I, as well as the expression of Hv1, in microglia were measured by qRT-PCR and Western blot assays. In addition, the apoptosis ratio of neuronal cells was determined by flow cytometry.
ResultsRSV infection activated the protein expression of Hv1 protein in microglia in vitro (p <0.05), induced morphological changes in SY5Y cells, lengthened synapses (73.36±0.12 μm vs 38.10±0.11 μm), simultaneously activated TLR3 and RIG-I protein expression (p <0.05), upregulated the secretion of the inflammatory cytokines TNF-α, IL-6, and IL-8 (p <0.01), and increased the apoptosis rate of SY5Y cells (p <0.01).
ConclusionThe results demonstrate that RSV infection of microglia can induce SY5Y neuronal cell injury and stimulate apoptosis through inflammatory cytokine release.
Keywords: Cytokines, In Vitro Techniques, Microglia, Neurons, Respiratory syncytial virus infections -
Neurological coordination is essential for performing biological and mechanical activities achieved by the cooperation of biomolecules such as carbohydrates, lipids, and proteins. It plays an important role in energy production, which can be fascinatingly improved by ketone bodies. Ketone bodies are small, water-soluble lipid molecules by shifting the glycolytic phase KBs directly enters into the tricarboxylic acid cycle for ATP synthesis. It leads to the production of much more energy levels than a single molecule of glucose. Therefore, it could have a profound effect on neuro-metabolism as well as bioenergetics of ATP production. These neuro-enhancement properties are useful for epilepsy, Alzheimer's, and several neurocognitive disorders treatment. Interestingly, the cancer cells cannot use it for efficiently energy production results in decreasing cancer cells viability. This review summarized ketone bodies generation, related imperative effects on normal cells, and more importantly its application in various neurological disorders treatment by rising neuronal functions.
Keywords: Neurons, Ketogenic Diet, Physiology, ATP, Ketones Bodies, Metabolic Function -
Background
Cell culture is an important technique in cellular and molecular biology. There are two basic systems for culturing cells, adherent (monolayer) culture and suspension culture. In adherent cell culture, cellular adhesion molecules play a vital role in many physiological processes. Many cells, especially primary-obtained cells, hardly attach to plates, so coating agents are used for cell attachment and growth. There is no striking report on whether all cells need coated plates.
ObjectivesWe investigated whether a coating plate is essential for primary spinal cord-obtained neuron culture.
MethodsCells were separated and seeded in tissue culture plates coated with either Poly(L-lysine) or Poly(D-lysine), as well as without coating containing DMEM-F12 media with 10% FBS.
ResultsInterestingly, we found that neuron cells more potently attached to coating free plates.
ConclusionsThese results provide strong evidence helping the researchers to optimize primary spinal cord cultures.
Keywords: Neurons, Spinal Cord, Cell Adhesion, Primary Cell Culture, PolyL-lysine -
مقدمه
امروزه شاهد گسترش روز افزون سیستم های الکترونیکی و میدانهای الکترومغناطیس در محیط زندگی بوده و از آن در درمان برخی اختلالات عصبی بهره مند می گردیم. هدف این مطالعه بررسی اثرات تکثیری و تمایزی امواج الکترومغناطیس بر روی سلولهای بنیادی بند ناف بود.
روش بررسیبند ناف نوزاد سالم تازه متولد شده در شرایط استریل به آزمایشگاه کشت سلولی منتقل گردید. سپس با استفاده از آنزیم های هیالورونیداز، ترپسین وکلاژنازسلولها جدا و سپس کشت داده شدند. برای خالص سازی و حذف سلولهای اضافی فلاسکها سه بار پاساژ داده شدند و سپس روزانه به مدت 2 ساعت برای 14 روز فلاسکها در داخل انکوباتور درمعرض امواج الکترومغناطیس با فرکانس 50 هرتز و شدتهای 25/0 ، 5/0 و 1 میلی تسلا قرار گرفتند. سپس با استفاده از آنتی بادی اختصاصی نورون و MTT از لحاظ تکثیر و تمایزسلولها به نورون مورد بررسی قرار گرفتند.
یافته هانتایج نشان داد شدتهای 5/0 و 1 میلی تسلا باعث کاهش شدید سلولها گردید اما در گروه 0/25میلی تسلا کاهش تعداد سلولها با گروه کنترل معنی دار نبود. اما در بررسی تمایز فقط در گروه های 0/25و 0/5 تمایز مشاهده شد و در گروه 1 میلی تسلا تمایزی مشاهده نشد.
بحث و نتیجه گیرینتایج این تحقیق حاکی از آن است که امواج الکترومغناطیس بر تمایز و تکثیر سلولهای بنیادی مزانشیمی بند ناف اثرگذار هستند.
کلید واژگان: امواج الکترومغناطیس, سلولهای بنیادی مزانشیمی, بند ناف, نورونEBNESINA, Volume:21 Issue: 4, 2019, PP 41 -50BackgroundToday, due to ever-expanding of using electronic systems and electromagnetic fields in the living environment and it can be used in treatment of some neurological disorders. The aim of this study was to investigate the effects of electromagnetic waves on cord blood stem cells.
Materials and methodsThe newborn's umbilical cord was transferred to a cell culture laboratory under sterile conditions. Then, using hyaluronidase, trypsin and collagenase enzymes, the cells were separated and cultured. For purification and removal of additional cells, the flasks were passaged three times. Then, flasks were incubated in the incubator with electromagnetic waves at a frequency of 50 Hz and intensity 0.25, 0.5, and 1 millitesla, two hours per day for a consecutive 14 days. Then, neuronal specific antibodies and MTT assay were tested for neuronal proliferation and differentiation of the cells.
ResultsThe results showed that the intensity of 0.5 and 1 significantly decreased the number of cells, but in the 0.25 millitesla, there was no significant decrease in the number of cells in comparison with the control group. In addition, differentiation was observed only in 0.25 and 0.5 millitesla groups, but not in group 1 millitesla.
ConclusionThe results of this study indicate that electromagnetic waves can differentiate and expand the umbilical mesenchymal stem cells.
Keywords: Electromagnetic Waves, Mesenchymal Stem Cells, Umbilical Cord, Neurons -
مقدمهآسیب مغزی پس از ضربه یک وضعیت جدی پزشکی است که سالانه بیش از 2 میلیون نفر در جهان را تحت تاثیر قرار می دهد. هدف این مطالعه بررسی اثر لیپو پلی ساکارید بر تعداد نورون های تیره ناشی از آسیب مغزی پس از ضربه در قشر آهیانه ای –گیجگاهی بود.مواد و روش هالیپو پلی ساکارید (0/1 و 0/5 میلی گرم بر کیلوگرم) 5 روز قبل از اعمال به موش های صحرایی تزریق شد. با استفاده از رنگ آمیزی تولوئیدن بلو تعداد نورون های تیره در هیپوکامپ در موش های صحرایی گروه شاهد و پیش درمانی شده با لیپو پلی ساکارید 4 و 12 ساعت بعد از تروما مورد بررسی قرار گرفت.یافته هانورون های تیره 4 ساعت بعد از تروما در مقایسه با 12 ساعت بعد از آسیب مغزی پس از ضربه به طور معنی داری بیشتر بود. تعداد نورون های تیره در هیپوکامپ در گروه پیش درمانی شده با لیپو پلی ساکارید به طور معنی داری کاهش یافت. در موش های صحرایی پیش درمانی شده با لیپو پلی ساکارید تعداد نورون های تیره 4 ساعت پس از تروما در مقایسه با 12 ساعت بعد از آسیب مغزی پس از ضربه به طور معنی داری بیشتر بود.نتیجه گیریداده ها نشان داد که آسیب سلولی هیپوکامپ در ساعات اولیه بعد از اعمال آسیب مغزی پس از ضربه ایجاد می شود. به کارگیری لیپو پلی ساکارید می تواند از آسیب سلولی جلوگیری کند.کلید واژگان: نورون ها, هیپوکامپ, موش های صحراییIntroductionTraumatic brain injury (TBI) is a serious medical condition that affects annually year more than 2 million people worldwide. This study was aimed to evaluate the effect of lipopolysaccharide (LPS) on the number of dark neurons induced by TBI in the parieto-temporal cortex.Materials And MethodsLPS (0.1 and 0.5 mg/kg) was injected i.p. to rats 5 days before induction of TBI in the parieto-temporal cortex. Using toluidine blue staining, we evaluated the number of dark neurons in the hippocampus in sham and LPS preconditioned rats 4 and 12 hours after the trauma.ResultsThe increase in dark neurons was significantly higher after 4 h of trauma compared to 12 h after TBI. LPS preconditioning significantly decreased the mean number of dark neurons in the hippocampus. In LPS preconditioned rats the mean number of dark neurons was also significantly higher 4 hours after trauma compared to 12 h after TBI.ConclusionThese data indicate that hippocampal cellular damage produced during the first hours after induction of TBI. This cellular damage could be prevented by administration of LPS.Keywords: Neurons, Hippocampus, Rats
-
سابقه و هدفکشت سلول های اسپرماتوگونی و تولید سلول های پر توان Embryonic Stem cells (ES like cells) ، این سلول ها را به عنوان منبع کافی و جدیدی برای سلول درمانی و ترمیم بیماری ها از جمله بیماری های نورو دژنراتیو پیشنهاد می دهد. هدف از تحقیق حاضر ارزیابی الگوی تغییرات ژنی طی تمایز سلول های اسپرماتوگونی به سلول های پیش ساز الیگودندروسیت می باشد.مواد و روش هادر این مطالعه تجربی سلول های اسپرماتوگونی ازبیضه موش نوزاد (6-2 روزه) هر بار 10-6 عدد موش توسط دو مرحله هضم آنزیمی جداسازی شدند. سلول های مورد مطالعه به سه گروه سلول های بنیادی شبه جنینی، نورو پروژنیتور و پیش ساز الیگودندروسیت تقسیم و مارکرهای اختصاصی stra8، mvh ،piwil2 ، C-myc،Nanog ، NF68، Nestin ، Olig2، NG2،با روش Real Time-PCR و روش ایمونوسیتوشیمی در هر مرحله تمایز بررسی شدند.یافته هابررسی های مولکولی نشان داد که میزان افزایش بیان ژن Nestin در سلول های پیش ساز عصبی نسبت به سلول های شبه جنینی 1/3 برابر بود. در بررسی مولکولی در پایان مرحله دوم تمایز مشخص شد کشت در پایان مراحل القا منجر به افزایش معنی دار بیان ژنهای Olig2 و NG2 وکاهش بیان ژن Nestin می شود (0/05p<). بررسی های مولکولی نشان داد که این افزایش در سلول های شبه الیگودندروسایت نسبت به سلول های پیش ساز عصبی به ترتیب 1/4 و1/6 برابر بود.نتیجه گیریدر این مطالعه نشان داده شد که سلول های شبه جنینی پس از پیش القا توانایی بیان مارکرهای نورونی NF68 و Nestin را دارند. سلول های بنیادین شبه جنینی ژن های NG2وOlig2 پس از مرحله القا در سلول ها بیان شد.کلید واژگان: اسپرماتوگونیا, تمایز, سلولهای بنیادی جنینی, نورون, الیگودندروسیتBackground And ObjectiveThe culture of spermatogonial cells and the production of embryonic stem cells (ES-like cells), suggest these cells as a sufficient new source for cell therapy and for the treatment of diseases, including neurodegenerative diseases. The aim of this study is to evaluate the pattern of genetic changes during differentiation of spermatogonial cells into oligodendrocyte precursor cells.MethodsIn this experimental study, spermatogonial cells were isolated from the testicles of 2 6 days old newborn mice (6 10 mice each time) through two stages of enzymatic digestion. The cells were divided into three groups of quasi-embryonic stem cells, neuro-progenitive and oligodendrocyte precursor. Specific markers stra8, mvh, piwil2, C-myc, Nanog, NF68, Nestin, Olig2, and NG2 were evaluated using Real Time-PCR and immunocytochemistry method at each differentiation step.
FINDINGS: Molecular evaluations showed that increase in Nestin gene expression in neuronal precursor cells was 1.3 times more than quasi-embryonic stem cells. In the molecular evaluations at the end of the second stage of differentiation, it was determined that culture at the end of the induction steps resulted in a significant increase in the expression of the genes of Olig2 and NG2 and decrease in the expression of Nestin gene (pConclusionIn this study, it was demonstrated that quasi-embryonic stem cells have the potential to express the NF68 and Nestin neuron markers. The quasi-embryonic stem cells of NG2 and Olig2 genes were expressed in the cells after the induction stage.Keywords: Spermatogonia, Differentiation, Embryonic Stem Cells, Neurons, Oligodendrocytes -
IntroductionIn adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes.MethodsIn this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subventricular zone was dissected by a coronal incision in optic chiasm zone. Enzymatic digestion was performed using trypsin-EDTA. The isolated cells were cultured in serum free DMEM/F12 medium, containing bFGF (basic Fibroblast Growth Factor) and EGF (Epidermal Growth Factor) growth factors.ResultsNeurospheres were observed five days after culturing. Immunocytochemistry was used to investigate nestin gene expression and identify neural stem cells. Neural stem cells were differentiated in poly-L-lysine coated plates in the absence of growth factors. The expression of GFAP, β tubulin III, and nestin genes were analyzed by RT-PCR. The results of immunocytochemistry confirmed nestin gene expression in the neural stem cells. Phenotype of neurons and astrocytes were observed 5 days after cell culture in differentiation medium. RT-PCR analysis revealed the expression of GFAP and β tubulin III genes.ConclusionThe results of this research show that only one rat brain is needed for neural stem cells isolation and differentiation to neurons and astrocytes.Keywords: Neural stem cells, Astrocytes, Neurons, Cell differentiation
-
مقدمهناحیه تگمنتوم شکمی، به عنوان یک منبع اصلی از نورون های دوپامینرژیک نقش های بسیار مهمی در حالت های حیاتی و پاتولوژیک از قبیل وابستگی دارویی و افسردگی دارند. گیرنده های روی نورون های دوپامینرژیک ناحیه تگمنتوم شکمی با تراکم و تنوع مختلف دارای اثرات تعدیل کننده بر روی بافت های هدف شان مانند قشر مخ می باشند. هدف از مطالعه حاضر بررسی تاثیر انسداد گیرنده GABA-A روی الگوی شلیک نورونی دوپامینرژیک ناحیه تگمنتوم شکمی بود.مواد و روش هاموش های صحرایی ویستار نر (تقریبا 200 گرم) به طور تصادفی در هشت گروه با تعداد قابل جایگزین برابر (کنترل، شم و درمان ها) تقسیم شدند. الگوهای شلیک نورونی دوپامینرژیک ناحیه تگمنتوم شکمی (ساده -تونیک یا شلیک انفجاری) تحت بیهوشی اورتان و روش استریوتاکسیک به دست آمده بودند. بیکوکولین به عنوان یک آنتاگونیست گیرنده GABA-A به کمک روش میکروایونتوفورز داخل بطن مغزی (5، 25، 50، 500، 1000 و 2500 نانوگرم) تزریق گردید و به منظور تشخیص فعالیت های انفجاری نورونی به دنبال تزریق دارو، فعالیت های نورونی ثبت گردید.یافته هاوضعیت ساده -تونیک از نورون های دوپامینرژیک ناحیه تگمنتوم شکمی در دوره پیش جراحی به طور کلی حدود 5/78 اسپایک در ثانیه با شلیک پایدار بود. تزریق وابسته به دوز بیکوکولین، الگوی شلیک انفجاری را تعدیل کرده بود. مقدارهای ذکر شده فوق از بیکوکولین به ترتیب منجر به القاء شلیک انفجاری 5/2، 10/4، 23/4، 28/8، 35/9 و 36/17 درصد از نورون ها با دوره زمانی 25 ، 8/7، 20/45، 29/87، 40/56 و 50/34 دقیقه گردید. میزان شلیک ساده -تونیک همچنین پس از تزریق نسبت به سطوح پیش تزریق به صورت وابسته به دوز از 8 تا 358 درصد افزایش داشت.نتیجه گیرینتایج نشان داد که گیرنده های GABA-A روی نورون های دوپامینرژیک ناحیه تگمنتوم شکمی می توانند نقش های تنظیمی روی الگوهای شلیک خودشان داشته باشند. آوران گابائرژیک خارجی یا اینترنورون های داخلی که تنظیم گابا روی نورون های دوپامینرژیک ناحیه تگمنتوم شکمی را میانجیگری می کنند، می توانند در عملکرد وابران نورون های دوپامینرژیک ناحیه تگمنتوم شکمی دخالت کنند.کلید واژگان: ناحیه تگمنتوم شکمی, نورون های دوپامینرژیک, نورون هاIntroductionVentral Tegmental Area (VTA), as a major source of dopaminergic (DA) neurons, has crucial roles in the vital and pathologic conditions, such as drug dependence and depression. The receptors on the VTA-DA neurons with different density and diversity have modulatory effects on their target tissues, such as the cerebral cortex. The aim of the present study was to study the effect of GABA-A receptor blockade on the VTA-DA neuronal firing pattern.Materials And MethodsMale Wistar rats (~200 gr) were randomly allocated in 8 groups with equal substitutive numbers (control, sham, and treatments). The VTA-DA neuronal firing patterns (simple-tonic or burst firing) were acquisitioned under urethane anesthesia and stereotaxic approach. Bicuculline as a GABA-A receptor antagonist were infused microiontophoretically intracerebroventricularly (5, 25, 50, 500, 1000, and 2500 ngr) and peri-injection neuronal firing were captured for burst firing detection.ResultsThe simple-tonic spiking of the VTA-DA neurons in the pre-injection period was about 5.78 spikes/sec overall with stable firing. Bicuculline microinjection dose-dependently modulated burst firing pattern. The abovementioned amounts of Bicuculline induced 5.2, 10.4, 23.4, 28.8, 35.9, 36.17 percent of neurons to fire burst with duration of 5.2, 8.7, 24.45, 29.87, 40.56, and 50.34 minutes, respectively. The post injection simple-tonic firing rates were also dose-dependently elevated from 8 to 358 percent of the pre-injection levels.ConclusionThe results showed that GABA-A receptors on the VTA-DA neurons can have regulatory roles on their firing patterns. The external GABAergic afferents or internal interneurons that mediate GABA modulation on the VTA-DA neurons can interfere in the efferent functions of the VTA-DA neurons.Keywords: Ventral Tegmental Area, Dopaminergic Neurons, Neurons
-
ObjectiveBasil herb (Ocimum basilicum) has long been used in human nutrition. Nowadays antioxidant role of this herb is known more. The aim of this study was to study the anti-oxidative property of sweet basil to protect central nervous system against oxidative damages of electromagnetic field (EMF) and its affective sequences.Materials And MethodsForty Albino male Wistar rats were randomly allocated to four groups, 10 rats per each. Group 1 received normal diet (control group), group 2 was exposed to 50 Hz EMF for 8 weeks (EMF group). Group 3 was exposed to 50 Hz EMF and fed with basil extract (0.5 g/kg body weight) for 8 weeks (treatment group) and group 4 was fed with basil extract (0.5 g/kg body weight) for 8 weeks and named as herbal group. At the end of eighth week 5 mL blood was taken from all rats for biochemical analysis and for ultra structural study of brain neuron samples was taken.ResultsThe results showed level of superoxide dismutase (SOD), glutathione (GSH) peroxidase and catalase activity (CAT) were significantly increased in herbal and treatment groups as compared to EMF group (P < 0.05). Level of malondialdehyde (MDA) was significantly decreased in treatment group as compare to EMF group (P < 0.05). Ultra structural evaluation of EMF group showed brain nucleus has a lot of heterochromatic changes and mitochondria have been ovulated and have swelling figure this changes were less in treatment group.ConclusionAntioxidant capacity of basil extract can cause to decrease oxidative effects of EMF on brain tissue and in rats.Keywords: Brain, Neurons, Ocimum basilicum, Oxidative damage
-
PurposeGlutamate is a major excitatory neurotransmitter in mammalian central nervous system. Excessive glutamate releasing overactivates its receptors and changes calcium homeostasis that in turn leads to a cascade of intracellular events causing neuronal degeneration. In current study, we used neural stem cells conditioned medium (NSCs-CM) to investigate its neuroprotective effects on glutamate-treated primary cortical neurons.MethodsEmbryonic rat primary cortical cultures were exposed to different concentrations of glutamate for 1 hour and then they incubated with NSCs-CM. Subsequently, the amount of cell survival in different glutamate excitotoxic groups were measured after 24 h of incubation by trypan blue exclusion assay and MTT assay. Hoechst and propidium iodide were used for determining apoptotic and necrotic cell death pathways proportion and then the effect of NSCs-CM was investigated on this proportion.ResultsNSCs conditioned medium increased viability rate of the primary cortical neurons after glutamate-induced excitotoxicity. Also we found that NSCs-CM provides its neuroprotective effects mainly by decreasing apoptotic cell death rate rather than necrotic cell death rate.ConclusionThe current study shows that adult neural stem cells could exert paracrine neuroprotective effects on cortical neurons following a glutamate neurotoxic insult.Keywords: Glutamate, Neural stem cells, Neurons, Primary cell culture, Cell viability, Rat
-
ObjectiveResveratrol, a phytoalexin, has a wide range of desirable biological actions. Despite a growing body of evidence indicating that resveratrol induces changes in neuronal function, little effort, if any, has been made to investigate the cellular effect of resveratrol treatment on intrinsic neuronal properties.Materials And MethodsThis experimental study was performed to examine the acute effects of resveratrol (100 μM) on the intrinsic evoked responses of rat Cornu Ammonis (CA1) pyramidal neurons in brain slices, using whole cell patch clamp recording under current clamp conditions.ResultsFindings showed that resveratrol treatment caused dramatic changes in evoked responses of pyramidal neurons. Its treatment induced a significant (P<0.05) increase in the after hyperpolarization amplitude of the first evoked action potential. Resveratrol-treated cells displayed a significantly broader action potential (AP) when compared with either control or vehicle-treated groups. In addition, the mean instantaneous firing frequency between the first two action potentials was significantly lower in resveratrol-treated neurons. It also caused a significant reduction in the time to maximum decay of AP. The rheobase current and the utilization time were both significantly greater following resveratrol treatment. Neurons exhibited a significantly depolarized voltage threshold when exposed to resveratrol.ConclusionResults provide direct electrophysiological evidence for the inhibitory effects of resveratrol on pyramidal neurons, at least in part, by reducing the evoked neural activity.Keywords: Resveratrol, Electrophysiology, Action Potential, Neurons, Whole Cell Patch Clamp
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.