جستجوی مقالات مرتبط با کلیدواژه "organ dose" در نشریات گروه "پزشکی"
-
Background
Computed tomography (CT) imaging has a large portion in the dose of patients from radiological procedures; therefore, accurate calculation of radiation risk estimation in this modality is inevitable. In this study, a method for determining the patient‑specific effective dose using the dose–length product (DLP) index in lung CT scan using Monte Carlo (MC) simulation is introduced.
MethodsEGSnrc/BEAMnrc MC code was used to simulate a CT scanner. The DOSxyznrc simulation code was used to simulate a specific voxelized phantom from the patient’s lungs and irradiate it according to X‑ray parameter of routing lung CT scan, and dose delivered to thorax organs was calculated. Three types of phantoms were simulated according to three different body habits (slim, standard, and fat patients) in two groups of men and women. A factor was used to convert the relative dose per particle in MC code to the absolute dose. The dose was calculated in all lung organs, and the effective dose was calculated for all three groups of patient body habits. DLP index and volume CT dose index (CTDIvol) were extracted from the patient’s dose report in the CT scanner. The DLP to effective dose conversion factor (k‑factor) for patients with different body habitus was calculated.
ResultsLung radiation dose in slim, standard, and fat patients in men was 0.164, 0.103, and 0.078 mGy/mAs and in women was 0.164, 0.105, and 0.079 mGy/mAs, respectively. The k‑factor in the group of slim patients, especially in women, was higher than in other groups.
ConclusionsCT scan dose indexes for slim patients are reported to be underestimated in studies. The dose report in CT scan systems should be modified in proportion to the patient’s body habitus, to accurately estimate the radiation risk.
Keywords: Computed tomography scan, dose–length product, effective dose, organ dose, simulation -
Purpose
Radiotherapy (RT), which is considered one of the critical treatments for cancer patients is also known as adjuvant therapy and palliative care, and can be attempted alone or concurrent with chemotherapy. Although RT reduces the risk of recurrence, the scattered dose may enhance the risk of secondary cancer induction; this is raising some challenges in clinical practice. To the best of our knowledge, few studies to date have assessed such effects of brain cancer adjuvant radiotherapy.
Materials and MethodsWe estimated the RT-induced risk of secondary cancer for a 45-year-old patient who had undergone radiotherapy of the head and pelvis with a 6 MV photon beam in 15 and 10 sessions, respectively. The absorbed dose by the thyroid, breast, eye lenses, region overlying ovaries, and parotids was measured using Thermoluminescent Dosimeters (TLD). Since the patient was scanned before radiotherapy, it was decided to calculate their risk as well. To evaluate the cancer risk, radiobiological models for Excess Absolute Risk (EAR), as well as Excess Relative Risk (ERR) published by the Committee on the Biological Effects of Ionizing Radiation (BEIR) in report VII, were implemented. This study thus aimed to estimate the Risk of Exposure-Induced Death (REID) and assess the radiation dose delivered to patients from Computed Tomography (CT) scans and common diagnostic nuclear medicine examinations.
ResultsThe mean risk of secondary cancer for sensitive organs was calculated 3 years after radiotherapy. The highest estimated ERR was related to the region overlying right and left ovaries for pelvic radiotherapy (47.82) and (51.17), and the next highest EAR followed by right and left eye lenses for brain radiotherapy (18.09) and (15.43), respectively. In addition, other cancers arising from CT scans had the highest REID values for solid cancer (0.0015) and bone scans revealed the highest REID values for other cancers (0.00121).
ConclusionCalculating the corresponding risks of RT is of great significance for the patients in procedural change. Choosing proper field sizes and adapted techniques to avoid excessive doses to healthy organs can thus be a great assistance in this regard.
Keywords: Radiotherapy, Cancer Risk, Thermoluminescent Dosimeters, Organ Dose -
Purpose
The purpose of this study was to evaluate the risk of gonad cancer induction attributable to pelvic radiation therapy in adult patients.
MethodsBy characterizing the peripheral dose the TLDs were placed on the testis and ovary in two fractions of radiotherapy. All patients delivered a 45 Gy total dose in 4 fields in the prone position with 3D planning. The doses from a linear accelerator at 18 MV photon beam, were investigated.
ResultsThe mean excess relative risk (ERR) based on the BEIR IIV models of men and women after 5 and 10 year of radiotherapy treatment for pelvic radiotherapy was 0.825±0.168, 0.948±0.504, 0.700±0.135, and 0.803±0.407 respectively.
ConclusionEstimating the second cancer risk of untargeted organs is crucial in radiotherapy. Using the single-energy mode linear accelerator and proper shields can be minimized the out-of-field doses.
Keywords: Radiotherapy, Cancer Risk, Thermo Luminescence Dosimeters, Organ Dose -
BackgroundEstimation of eye lens dose is important in head computed tomography (CT) examination since the eye lens is a sensitive organ to ionizing radiation.ObjectiveThe purpose of this study is to compare estimations of eye lens dose in head CT examinations using local size-specific dose estimate (SSDE) based on size-conversion factors of the American Association of Physicists in Medicine (AAPM) Report No. 293 with those based on size-conversion factors of the AAPM Report No. 220.Material and MethodsThis experimental study is conducted on a group of patients who had undergone nasopharyngeal CT examination. Due to the longitudinal (z-axis) dose fluctuation, the average global SSDE and average local SSDE (i.e. particular slices where the eyes are located) were investigated. All estimates were compared to the measurement results using thermo-luminescent dosimeters (TLDs). The estimated and measured doses were implemented for 14 patients undergoing nasopharyngeal CT examination.ResultsIt was found that the percentage differences of the volume CT dose index (CTDIvol), average global SSDE based on AAPM No. 220 (SSDEo,g), average local SSDE based on AAPM No. 220 (SSDEo,l), average global SSDE based on AAPM No. 293 (SSDEn,g) and average local SSDE based on AAPM No. 293 (SSDEn,l) against the measured TLD doses were 22.5, 21.7, 15.0, 9.3, and 2.1%, respectively. All comparisons between dose estimates and TLD measurements gave p -values less than 0.001, except for SSDEn,l (p -value = 0.566).ConclusionSSDE based on AAPM Report No. 293 can be used to accurately estimate eye lens radiation doses by performing the calculations on a number of specific slices containing the eyes.Keywords: Radiation, Ionizing, X-rays, Computed Tomography, Algorithms, Eye Lens Dose, Organ Dose, Size-Specific Dose Estimates
-
Estimating organ dose in computed tomography using tube current modulation: A Monte Carlo simulationBackground
The computed tomography (CT) scan delivers a relatively high radiation dose to the patient. One of the critical factors that affects the absorbed dose is the intensity of tube current. The aim of this study is to measure and compare the radiation dose of three radiation-sensitive organs in constant current mode and tube current modulation (TCM) modes.
Materials and MethodsCT-scans from the chest and abdomen-pelvis regions of adults in three different current modes were obtained. The absorbed doses of thyroid, lungs, and ovaries were measured using the thermoluminescent dosimeter (TLD) chips embedded in the RANDO phantom. Furthermore, the confirmation of the organ doses was simulated using the Monte Carlo (MC) simulation. The measured doses were evaluated and confirmed by comparison with the simulated doses.
ResultsThe relative differences between the measured and simulated doses for thyroid, lung, and ovary were -4.7%, -1.3%, and -11.7% for constant current mode, -2.2%, -11.2%, and -6.3% for longitudinal modulation mode, and 0.0%, -14.6%, and -9.9% for angular modulation mode, respectively. With longitudinal modulation mode, thyroid, lung, and ovary doses were reduced by 34.0%, 19.0%, and 19.0% for the measured doses and 32.0%, 26.0%, and 13.0% for the simulated doses, respectively. The longitudinal modulation mode resulted in a greater dose reduction compared to the angular modulation for both measured and simulated doses.
ConclusionUsing TCM resulted in reducing does received by the organs in both measured and simulated doses. The TCM reduces organ dose, which is more evident in the longitudinal modulation.
Keywords: Computed tomography, tube current modulation, organ dose, thermoluminsent dosimeter, Monte Carlo simulation -
Introduction
The study aimed to assess absorbed and effective doses in organs through computed tomography (CT) examinations using automatic exposure control (AEC) and fixed tube current (FTC) techniques.
Material and MethodsScanning parameters were obtained for routine adult CT examinations and used to estimate the organ absorbed and effective doses using CT-Expo software. The estimated effective doses were based on International Commission on Radiological Protection publication 103 recommendations.
ResultsRegarding the scans performed with AEC, doses to head, chest, abdomen and pelvic organs were within the range of 19.7-41.8, 6.4-17.4, 19.2-20.9, and 10.5-24.9 mGy respectively. Moreover, the effective doses for the mentioned organs were 1.6, 6.1, 6.4 and 5.4 mSv respectively. Considering FTC technique, doses to organs ranged 16.7-75.5, 4.1-52.2, 10.6-33.2 and 5.2-38.7 mGy respectively. Moreover, the mean effective doses of FTC were 2.1, 6.9, 9.4 and 6.1 mSv, respectively. Examinations performed with AEC technique induced a dose reduction of 9% and 34% for head organs, 52, 62 and 25% for chest organs, 16% and 14% for abdomen organs, and 11% and 10% for pelvic organs, compared to the FTC. A dose increase of 3% was observed for testes. The mean effective doses for scans with AEC were 13-46% lower than those obtained by FTC.
ConclusionAccording to the obtained results of the current study, the estimated doses for scans with AEC technique were in a lower level compared to FTC technique. Accordingly, it is recommended to utilize this technique for CT examinations to ensure optimal dose reduction to radiosensitive organs.
Keywords: Computed Tomography, organ dose, Radiation Dosimetry, Radiology -
IntroductionOrgan dose estimation using thermoluminescence dosimeter (TLD) is known to be a standard, although many other methods, such as simulation software, optically stimulated luminescent dosimeters, and photodiodes are still in use. This study aimed at directly measuring mean organ doses to the selected organs in the head/neck, chest, and abdominal regions from four computed tomography (CT) units in Lagos, south-west of Nigeria.Material and MethodsThis study was conducted on locally constructed inhomogeneous phantoms to measure mean organ doses to the head/neck, chest, and abdominopelvic regions from CT units in the Lagos metropolis, Nigeria. Lithium fluoride doped with magnesium and titanium (LiF: Mg, Ti) TLD was used for the measurement. Statistical analysis was performed by IBM SPSS (version 20).ResultsValidation of the designed phantoms was below ± 20% kVp and mAs parameters among the CT units, which was statistically different with regard to the observed dose discrepancies. Generally, a one-way ANOVA showed that there was a statistically significant difference in the investigated mean organ dose (P = 0.043). The comparison of the obtained results from this study with those of other studies revealed that there was no statistically significant difference in the TLDs (P > 0.05). The maximum relative difference in the dose was < 200%.ConclusionThe designed phantoms seemed to be useful for CT dose validation and could be used to validate simulation software in areas where readymade phantoms are not available.Keywords: Thermoluminescent-dosimeter, Computed Tomography Phantom, Organ, organ dose
-
BackgroundThis study presents patient specific and organ dose estimation in computed tomography (CT) imaging of thorax directly from patient CT image using Monte Carlo simulation. Patient's CT image is considered as the patient specific phantom and the best representative of patient physical index in order to calculate specific organ dose.Materials And MethodsEGSnrc /BEAMnrc Monte Carlo (MC) System was used for CT scanner simulation and DOSXYZnrc was used in order to produce patient specific phantom and irradiation of photons to phantom in step and shoot mode (axial mode). In order to calculate patient thorax organ dose, patient CT image of thorax as voxelized phantom was divided to a 64x64x20 matrix and 6.25 x 6.25 x 6.25 mm3 voxel size and this phantom was imported to DOSXYZnrc code. MC results in unit of Gy/particle were converted to absorbed dose in unit of mGy by a conversion factor (CF). We calculated patient thorax organ dose in MC simulation from all irradiated slices, in 120 kV and 80 kV photon energies.ResultsEffective dose was obtained from organ dose and organ weighting factor. Esophagus and spinal cord received the lowest, and bone received the highest dose. In our study, effective dose in CT of thorax was 7.4 mSV and 1.8 mSv in 120 and 80 kV, respectively.ConclusionThe results of this study might be used to provide the actual patient organ dose in CT imaging and calculation of real effective dose based on organ dose.Keywords: Organ dose, patient specific dose, computed tomography, MC simulation, EGSnrc, BEAMnrc
-
IntroductionThe purpose of this study was to estimate organ and effective doses in patients undergoing some common X-ray examinations in Sabzevar, Iran. The effective dose is one of the best parameters for describing the amount of radiation dose received by a patient undergoing any diagnostic X-ray examination. The public dose from X-ray examinations depends on various factors, and its contribution to the overall public dose from medical applications widely varies in different societies; however, in Iran, limited data is available on this subject.Materials And MethodsIn the present study, we aimed to estimate organ and effective doses arising from some common X-ray examinations on patients. Organ and effective doses were calculated by employing PCXMC program, based on Monte Carlo method.ResultsThe mean effective doses in this study were compared with similar findings reported in previous research. The applied methods in different studies are the main factors, which influence the effective dose values.ConclusionRadiation doses to radiosensitive organs such as the ovaries, testicles, and thyroid may induce harmful effects, e.g., cancer and genetic effects. Therefore, we should try to maintain the organ doses as low as possible.Keywords: Effective dose, Organ dose, PCXMC program, Radiography, Radiation Effects
-
مقدمهتحقیقات در زمینه ی دز دریافتی بیماران در بخش های رادیوگرافی، می تواند به بهینه سازی تکنیک های تصویربرداری و کاهش دز دریافتی بیمار کمک کند. هدف از انجام این مطالعه، برآورد دز دریافتی بیماران در بخش های رادیولوژی شهر یاسوج جهت تهیه ی اطلاعات لازم برای پرسنل پرتوکار، مردم جامعه و سازمان های مربوط بود.روش هادر این مطالعه ی توصیفی- مقطعی در سال 1393 بر روی 3 دستگاه مولد پرتوی ایکس در 5 مرکز رادیولوژی وابسته به دانشگاه علوم پزشکی یاسوج، دز دریافتی اندام ها در آزمایش های رایج رادیوگرافی با استفاده از روش تجربی و محاسبات Monte Carlo ارزیابی شد. برای هر دستگاه، 12 بیمار مراجعه کننده به بخش رادیولوژی جهت انجام رادیوگرافی قفسه ی سینه به صورت تصادفی انتخاب شدند و مقادیر دز سطحی (ESD یا Entrance surface dose) برای آزمایش های مرسوم رادیوگرافی با استفاده از دزیمتر ترمولومی نسانس (TLD یا Thermoluminescence dosimeter) اندازه گیری گردید. سپس با استفاده از شبیه سازی، دز رسیده به بافت های داخلی به دست آورده شد.یافته هادز دریافتی پوست یا دز سطحی (ESD)، برای رادیوگرافی های مرسوم برای نمای خلفی- قدامی قفسه ی سینه در محدوده ی 28/1-29/0 میلی گری بود. این مقدار، برای نمای قدامی- خلفی جمجمه در محدوده ی 80/3-96/1 میلی گری اندازه گیری شد. بیشترین دز در تصویربرداری قفسه ی سینه به ریه ی بیماران زن رسیده بود. همچنین، در تصویربرداری جمجمه، بیماران زن دچار بیشترین تابش گیری ناخواسته بودند.نتیجه گیریدر تصویربرداری قفسه ی سینه و به ویژه تصویربرداری از بیماران زن، داشتن برنامه های کنترل کیفی (Quality control) یا تضمین کیفیت (Quality assurance) در مراکز رادیولوژی، امری اجتناب ناپذیر است که به دنبال آن، اخذ تصاویر با کیفیت بالا در ازای دز دریافتی کمتر خواهد بود.کلید واژگان: دز پوست, دز اندام ها, دزیمتری, رادیولوژی, ایرانBackgroundThe aim of this study was to investigate organ absorbed dose for the patients undergoing routine x-ray imaging procedures in hospitals under the control of Yasuj University of Medical Sciences, Iran, in year 2014 using experimental measurement and Monte Carlo calculations.MethodsEntrance surface dose for three common radiology examinations in five radiology centers was measured. The entrance surface dose was measured in 12 randomly selected patients (male and female) for each x-ray examination. Patients were not exposed to any additional radiation and the radiographs were used for diagnostic purposes.
Findings: The entrance surface dose for the chest x-ray examinations were found to be in the range of 0.29 to 1.284 mGy. The ESD values for the skull examinations were in the range of 1.96 to 3.8 mGy. For both chest and skull examinations, females received the maximum imposed radiation dose.ConclusionThe results of the present study indicate a need for quality control (QC) and quality assurance (QA) programs to be undertaken to avert high cost and high patient doses. The recommendations to avoid unnecessary radiation exposure are also needed to decrease the patients absorbed dose.Keywords: Skin surface dose, Organ dose, Dosimetry, Radiology, Yasuj (Iran) -
زمینه و هدفبا توجه به اهمیت تصویر برداری سی تی اسکن، در تشخیص طرح درمان بیماری ها و نگرانی از میزان دوز دریافتی بیماران تحت معاینه سی تی اسکن و خلع اطلاعاتی درمورد وضعیت آن در مراکز سی تی اسکن تحت پوشش دانشگاه علوم پزشکی شهید بهشتی این تحقیق انجام شد.مواد وروش هاتحقیق به روش توصیفی انجام شد.فهرست مراکز سی تی اسکن با مراجعه کننده زیاد که زیر نظر دانشگاه علوم پزشکی شهید بهشتی اداره می شوند، تهیه شد (بخش دولتی). با مراجعه به این مراکز و جلب همکاری آن ها و جمع آوری اطلاعات اکسپوژر (میزان کیلو ولتاژ و میلی آمپر و زمان اسکن و...) به دو طریقه پرسشنامه هایی که در اختیارکارشناسان سی تی اسکن قرار گرفت و نیز Buck upکه از سابقه بیماران از دستگاه سی تی اسکن تهیه شده بود، انجام گرفت.دوزیمتری روی دو فانتوم سر و فانتوم بدن با همان شرایط اکسپوژر (تابش اشعه) انجام و میزان دوز اندام ها بر حسب میلی گری و دوز موثر دریافتی بر حسب میلی سیورت محاسبه شد.یافته هاتحقیق در پنج مرکز سی تی اسکن دانشگاه انجام شد و برای سی تی اسکن سر (Head CT) میزان دوز دریافتی مغز بالاترین مقدار (31.55 میلی گری)و مثانه کمترین دوز دریافتی (صفر) و برای سی تی اسکن قفسه سینه (ChestCT) پستان بالاترین دوز دریافتی (20.67 میلی گری) و مثانه کمترین دوز دریافتی (0.005 میلی گری) و برای سی تی اسکن شکم لگن (Abdominal Pelvice) مثانه بالاترین دوز دریافتی (16.44 میلی گری) و مغز کمترین دوز دریافتی (0.002 میلی گری) محاسبه و همچنین دوز موثر دریافتی بیماران برای سه پروتکل سر، قفسه سینه و شکم لگن برای مراکز مورد بررسی، محاسبه شد.بالاترین دوز موثر دریافتی بیماران در سی تی اسکن سرمربوط به مرکز 4 (0.16± 1.55 میلی سیورت) و بالاترین دوز موثر دریافتی بیماران درسی تی اسکن قفسه سینه مربوط به مرکز 5 (0.3± 3.4 میلی سیورت) و بالاترین دوز موثر دریافتی بیماران درسی تی اسکن شکم لگن مربوط به مرکز3 (0.3± 6.8میلی سیورت) به دست آمد.
نتیجه گیری و توصیه ها: به نظر می رسد دوز جذبی اندام ها و دوز موثر در بعضی مراکز بالاتر از میزان استاندارد جهانی (ICRP) است و به طور کلی این میزان دوز پرتوگیری جای نگرانی است.
کلید واژگان: سی تی اسکن, دوزجذبی, دوز موثر ونرم افزار ایمپکتBackgroundGiven the importance of CT imaging in the diagnosis and treatment of diseases, the concern of the dose that patients are receiving while undergoing CT examination and the lack of information about the situation in the centers CT scan was conducted at Shahid Beheshti University of Medical Sciences.MethodsA descriptive study was conducted. A list of CT scans of patients who are still under the supervision of Shahid Beheshti University of Medical Sciences were prepared (the public sector). Exposure data were collected via referring to the centers (kV voltage level and mA and scan time) and two methods were used and back up CT scan of the patient's history was carried. Dosimetry on phantoms, phantom head and body with the same exposure conditions (radiation) was performed and the organ dose and effective dose received by mili Gary was calculated according mili Sivert.ResultsThe research was conducted in five centers with CT scan. In CT scan of the head (head CT) brain dose, the highest dose (31.55 mG) and bladder lowest dose (zero) and in CT scan of the chest (chest CT), breast highest dose (20.67 mG) and bladder lowest dose (0.005 mG) and in CT scan of the abdomen and pelvis (abdominal pelvis) bladder highest dose (16.44 mG) and brain lowest dose (0.002 mG) was calculated. Furthermore, effective dose received by patients for three protocols of the head, chest, abdomen pelvis centers surveyed, respectively. The lowest effective dose for the patient CT scan of the head (0.16 ± 1.55 mSv) and the lowest effective dose for the patient CT scan of the chest (0.3 ± 3.4 mSv) and the highest effective dose received by patients CT scan of the abdomen pelvis (0.3 ± 6.8 mSv), respectively.ConclusionsIt seems organ dose and effective dose in some higher centers of the world standard (ICRP) and the overall dose exposure is a concern.Keywords: Software Impact, organ dose, effective dose -
مقدمههدف از این تحقیق، بررسی تاثیر اندازه ی بیمار بر مقدار و توزیع دوز CT (Computed tomography) بر اساس فانتوم های استوانه ای استاندارد پلی متیل متااکریلیک (PMMA یا Polymethyl methacrylate) بود.روش هادر این تحقیق، یک روش فیلم دوزیمتری دو بعدی با استفاده از فیلم های رادیوگرافی ارایه شد و با به کارگیری فانتوم هایی با قطرهای cm 10، 16، 24 و 32، تاثیر اندازه ی بیمار بر توزیع دوز و میزان دوز دریافتی مورد بررسی قرار گرفت. برای ساخت فانتوم های استوانه ای، از ورقه های پرسپکس استفاده شد. با انجام کالیبراسیون مناسب توزیع دوز دو بعدی به وسیله ی فیلم دوزیمتری در این فانتوم ها، در طی یک دور چرخش گانتری اندازه گیری شد.یافته هاتوزیع دوز در فانتوم های استوانه ای به خصوص در نواحی نزدیک تر به سطح متقارن نیست. افزایش عرض پرتو، مقدار دوز دریافتی در مقطع فانتوم را افزایش می دهد. با افزایش قطر فانتوم، دوز دریافتی در ناحیه ی مرکزی فانتوم نسبت به سطح آن به میزان بیشتری کاهش می یابد؛ به گونه ای که در فانتوم استوانه ای به قطر cm 16 دوز دریافتی در ناحیه ی مرکزی فانتوم به 65 درصد دوز دریافت شده بر روی سطح آن کاهش می یابد. در حالی که برای فانتوم استوانه ای به قطر cm 24، 45 درصد و برای فانتوم استوانه ای به قطر cm 32، 35 درصد می باشد.نتیجه گیریتوزیع دوز در مقطع بدن کودکان بیمار یکنواخت تر است و بسیار متاثر از تضعیف ناشی از تخت و حرکت اضافه تیوپ است که منجر به عدم تقارن توزیع دوز می شود. دوز دریافتی کودکان بیمار نسبت به بزرگسالان با mAs یکسان بیشتر است.
کلید واژگان: Computed tomography, دوزیمتری, دوز ارگان, فیلم دوزیمتریBackgroundThe purpose of this study is to investigate the effect of patient size on the distribution and amount of CT dose based on standard cylindrical polymethyl methacrylate (PMMA) phantoms.MethodsIn this study two dimensional film dosimetry method is represented by using radiographic films, and the effect of patient size on the distribution and the received dose amount is investigated using cylindrical phantoms with 10, 16, 24 and 32cm diameters. The cylindrical phantoms were made of PMMA sheets. By proper calibration, two dimensional distribution of the dose is measured using film dosimetry in these phantoms in a single axial rotation.FindingsThe dose distribution in the cylindrical phantoms was not symmetric particularly in closer points to the surface. The received dose in the cross section of phantom increases with beam width. The received dose in the central part of phantom is decreased more than its surface by the increment of phantom diameter. Specially, when using a cylindrical phantom with 16cm diameter, the received dose in the central part of the phantom is decreased to 65% of its surface's dose, whereas this percentage for cylindrical phantoms with 24cm and 32cm diameters is 45% and 35% respectively.ConclusionThe dose distribution in the cross section of the pediatric patients is more uniform. It is highly dependent on the couch attenuation and overscan, leading to the dose distribution asymmetry. The received dose in the pediatric patients will be more than adults for the same mAs.Keywords: CT, Dosimetry, Organ dose, Film dosimetry
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.