Geometrically Nonlinear Analysis of Axisymmetric Laminated Shell with Distributed Piezoelectric Layer
Abstract:
An extensive review on the topic of linear and nonlinear behavior of axisymmetric shells, laminated composites and smart materials is done by the authors. It is evident from the open literature that only a few studies on the geometrically nonlinear analysis of smart axisymmetric laminated shells by using higher-order shear deformation theory have been performed to the best of the author's knowledge. In this paper, geometrically nonlinear analysis of axisymmetric laminated shell with the piezoelectric layer is presented. Two types of higher-order shape functions are used to approximate better the transverse shear strain field across the thickness direction. To obtain more accurate solution, two degrees of freedom are added to the degenerated one-dimensional shell element. Total Lagrangian formulations along with Newton-Raphson technique are employed. The validity of this geometrically nonlinear method is illustrated through some numerical examples. The results not only demonstrate the effectiveness of the proposed approach, but also indicate much more precise than what has been shown before.
Keywords:
Language:
Persian
Published:
Journal of Solid and Fluid Mechanics, Volume:1 Issue: 2, 2012
Pages:
1 to 11
https://magiran.com/p1032725