Comparison of Multi Linear Regression, Nonparametric Regression, and Times Series Models for Estimation and Prediction of Evaporation Values
Author(s):
Abstract:
In order to simulate time series, various methods are presented such as times series models (AR, ARMA and ARMAX), multi-linear regression (MLR), and nonparametric regression (K-NN). In this research, performance of these models for estimation of missing values and prediction of future values of evaporation series (from open water) were assessed. ARMAX model with standardized input time series of Tmin, Tmax, Tav, Wind, RH, and sunshine hours, outperformed the other models and the K-NN and MLR were in the next ranks, respectively. Also after the principal component analysis, ARMAX model showed noticeable deviation for estimating missing values and MLR and K-NN in calibration and MLR in validation stage performed the best. For short-term predictions, ARMAX model has the best performance, but MLR performed better in long-term predictions, Time series models were not robust for long term predictions.
Keywords:
Language:
Persian
Published:
Iran Water Resources Research, Volume:9 Issue: 1, 2013
Page:
90
https://magiran.com/p1194134