Conformal mappings preserving the Einstein tensor of Weyl manifolds

Author(s):
Abstract:
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of W n are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds related by a conformal mapping preserving the Einstein tensor with a gradient covector field. Then, we prove that a Weyl manifold W n and a flat Weyl manifold W ~ n, which are in a conformal correspondence preserving the Einstein tensor are Einstein-Weyl manifolds. Moreover, we show that an isotropic Weyl manifold is an Einstein-Weyl manifold with zero scalar curvature and we obtain that a Weyl manifold W n and an isotropic Weyl manifold related by the conformal mapping preserving the Einstein tensor are Einstein-Weyl manifolds.
Language:
English
Published:
Bulletin of Iranian Mathematical Society, Volume:41 Issue: 2, 2015
Pages:
463 to 475
https://magiran.com/p1401631