NumericalModeling of Seismic Behavior of Piles in Liquefiable Soil
Author(s):
Abstract:
The lateral spreading of mildly sloping ground and the liquefaction induced by earthquakes can cause major destruction to foundations and buildings, mainly as a result of excess pore water pressure generation and softening of the subsoil. During many large earthquakes, soil liquefaction results in ground failures in the form of sand boils, differential settlements, flow slides, lateral spreading and loss of bearing capacity beneath buildings. Such ground failures have inflicted much damage to the built environment and caused significant loss of life. The risk of liquefaction and associated ground deformation can be reduced by various ground improvement methods, including densification, solidification (e.g., cementation), vibro-compaction, drainage, explosive compaction, deep soil mixing, deep dynamic compaction, permeation grouting, jet grouting, piles group and gravel drains or SCs. Nowadays, using pile foundation is one of the popular solution for soils vulnerable to liquefaction. the pile with enough length more than liquefiable soil depth can reduce the large deformation and unacceptble settlements. Liquefaction and lateral deformation of the soil has caused extensive damage to pile foundations during past earthquakes. Several example of significant damages in pile foundation have been reported in the literature from the 1964 Niigata,1983Nihonkai-Chubu,1989 Manjil and 1995 kobe earthquakes. These damage have been observed mainly in coastal areas or sloping ground. evaluation of liquefaction in order to develop the northern and southern ports and implement coastal and offshore structures in Iran is of particular importance due to locating in a high seismic hazard zone and Liquefactable soil in coastal areas. Although, in recent years many studies have been conducted to understand the various aspects of this phenomenon, yet a lot of uncertainties have remained about the lateral deformations of the soil and its effects on deep foundations. In this study, behavior of pile groups (2 × 1, 1 × 3, 2 × 2 and 3 × 3) were evaluated using fully coupled three-dimensional dynamic analysis. Therefore, the influence of effective parameters such as number of piles, ground slope angle on soil and pile behavior has been studied using the finite element software Opensees SP v2.4. results indicate that most of the factors affecting the behavior of the pile, soil are not considered in the current design codes (such as JRA 2002) and these issues indicate the need to revise the current design and analysis methods.Lateral Pressures compared to that of JRA regulations show that these regulations cannot exactly predict pressures on pile and pile groups. Altogether comparing the results of numerical model of this research to various laboratory observations indicate that the use of numerical method can be reliable to predict the behavior of the soil and pile qualitatively and quantitatively using appropriate constitutive model and parameters for soil and pile.
Keywords:
Language:
Persian
Published:
Quranic Knowledge Research, Volume:15 Issue: 4, 2016
Pages:
73 to 84
https://magiran.com/p1489629
مقالات دیگری از این نویسنده (گان)
-
Seismic Response Assessment of Structure-Foundation-Dense Granular Column Considering Interaction Effect on the Liquefiable Soil
*, Bita Sahebian, Mohammad Kazemi
Quranic Knowledge Research, -
Extended power series solution for Perkins-Kern-Nordgren model of hydraulic fracture
*
Journal of Civil Engineering, Autumn 2022