Effects of Polyacrylamide in Controlling of Splash Erosion from a Soil induced Freeze-Thaw Cycle

Abstract:
Introduction
The capability of a soil to resist erosion depends on soil-particle size and distribution, soil structure and structural stability, soil permeability, water content, organic matter content, and mineral and chemical constituents. Among many affecting factors on aforesaid characteristics, the freezing-thawing processes may considerably affects. Freeze–thaw fluctuation is a natural phenomenon that is frequently encountered by soils in the higher latitude and altitude regions in late autumn and early spring. Effects of freezing and freezing-thawing phenomena on soil erosion and sediment yield are important. Nevertheless, soil conservation under these phenomena by using different methods as well as soil amendments has not been yet considered. Surface application of anionic polyacrylamide (PAM) in solution has been found to be very effective in decreasing seal formation, runoff, and erosion.PAM stabilizes soil structure due to the ability of the polymer chains to adsorb onto clay particles and bridge them together forming stable domains. This adsorption can be a result of interactions between the negatively-charged functional groups of the PAM molecules and the positively-charged edges of clay minerals, orexchangeable polycations (mainly Ca2) acting as ‘bridges’ between the negative charges of the PAM's functional groups and the negatively- charged planar surfaces of the clay. The PAM is adsorbed on the external surfaces of the aggregates and binds soil particles far apart together, thereby were shorter and evidently less effective in enhancing increasing their resistance to splash by raindrop impact and detachment by runoff. A lot of research work focused on freezing effects in soils on aggregation or increase aggregate stability and emphasis corresponding effects. But the effects of application of soil amendments on soil induced freeze and thaw cycle have not been studied yet.
Materials And Methods
The present study evaluated the performance of PAM in controlling freeze-thaw cycle effects on splash erosion from a silty loam soil. A freeze-thaw cycle was simulated in Soil Erosion and Rainfall Simulation Laboratory of TarbiatModares University. The present study was conducted under controlled laboratory conditions with a simulated rainfall. The maximum efforts were made to mimic natural conditions to get access to results with high level of fidelity. Towards this attempt, air and different soil depth temperatures were analyzed in natural condition and 10 cm soil depth was targeted for the soil laboratory experiments. The rainfall storm with 72 mm h-1 and 30 min duration was simulated and conducted for the study treatments. The soil was poured in small erosion box with 0.25 m2 surface area in three replicates. A thick filter, draining the lower 20 cm of the soil profile was generated using mineral pumices.The prepared soil sample was evenly packed into the soil plots at a bulk density of 1.3 Mg m−3 similar to that measured under natural conditions. The plots were then placed in saturated pool for 24 h and then left to be drained to achieve an average moisture content of 35% similar to that recorded for the realities in the study area. So, splash erosion rates were measured using splash cups in two control treatments without PAM subjected to freezing and freezing-thawing processes, and two other plots treated by freezing and freezing-thawing processesplus application of 20 kg ha-1 of PAM. After securing thenormality ofdata, the average net splash erosionand the average upward and downward rates of splash erosion in allexperimental treatmentswere comparedby paired sampled T-test.
Results And Discussion
According to the results of statistical analyses, the PAM application had a significant effect (p
Language:
Persian
Published:
Journal of water and soil, Volume:29 Issue: 6, 2016
Pages:
1601 to 1611
https://magiran.com/p1524851  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!