On the effect of using phase change materials in energy consumption and CO2 emission in buildings in Iran: a climatic and parametric study

Abstract:
Energy crisis, global warming and other environmental issues are what motivate researchers to find new strategies to reduce energy consumption in buildings. Recently, using phase change materials (PCM) in the building’s envelopes has drawn significant attention as an energy-saving method, which helps in increasing the building’s thermal capacity. In the present research, the effects of the main thermal parameters including climate conditions, PCM layer thickness and its position, wall thermal resistance, and type of HVAC system [BS1] on the PCM energy-saving potential has been investigated using EnergyPlus software. A climate study has been undertaken in Iran which may be categorized into five climatic regions. Basing on the results, an effective PCM layer is almost 2–4 cm in thickness, and is embedded in the most interior layer of the wall. This conclusion does not depend on the type of HVAC system. In addition, the results showed that the southern strip of Iran, with a warm humid climate, and a relatively high solar irradiation, has the greatest potential to embed PCMs in the building’s envelopes as a factor for reducing its energy demand. This research and its results are useful in getting a better understanding of the PCMs and their effects on reducing the building’s energy consumption and CO2 emission.
Language:
English
Published:
Energy Equipment and Systems, Volume:3 Issue: 2, Summer and Autumn 2015
Pages:
73 to 81
https://magiran.com/p1534823