Efficiency of a multi-objective imperialist competitive algorithm: A bi-objective location-routing-inventory problem with probabilistic routes
Author(s):
Abstract:
An integrated model considers all parameters and elements of different deficiencies in one problem. This paper presents a new integrated model of a supply chain that simultaneously considers facility location, vehicle routing and inventory control problems as well as their interactions in one problem, called location-routing-inventory (LRI) problem. This model also considers stochastic demands representing the customers requirement. The customers uncertain demand follows a normal distribution, in which each distribution center (DC) holds a certain amount of safety stock. In each DC, shortage is not permitted. Furthermore, the routes are not absolutely available all the time. Decisions are made in a multi-period planning horizon. The considered bi-objectives are to minimize the total cost and maximize the probability of delivery to customers. Stochastic availability of routes makes it similar to real-world problems. The presented model is solved by a multi-objective imperialist competitive algorithm (MOICA). Then, well-known multi-objective evolutionary algorithm, namely anon-dominated sorting genetic algorithm II (NSGA-II), is used to evaluate the performance of the proposed MOICA. Finally, the conclusion is presented.
Keywords:
Language:
English
Published:
Journal of Artificial Intelligence and Data Mining, Volume:2 Issue: 2, Summer-Autumn 2014
Pages:
105 to 112
https://magiran.com/p1538982