Numerical Simulation of Film Cooling around a Gas Turbine Blade via Partially Averaged Navier-Stokes Approach (PANS)
Author(s):
Abstract:
At the present research, Film Cooling around a gas turbine blade has been studied numerically via Partially Navier-Stokes Simulation (PANS) approach which is one the most success approaches of Very Large Eddy Simulation (VLES) in turbulence flow. For detail investigation of flow around gas turbine blade (airfoil with film cooled holes on leading edge) has been simulated in three dimensions and inlet temperature and blade surface temperature has been considered: 409.5° C and 297.7° C respectively. Inlet Reynolds number is 8.42 X 105. Inlet flow is fully turbulent and turbulence intensity has been set on 0.052 meanwhile secondary flow effect in up and bottom of blade has been waived. Numerical calculation has been done by Fluent and partially averaged Navier- Stokes equations (PANS) have been applied to fluent by UDFs. The obtained results from Partially Navier-Stokes Simulation (PANS) method have been compared with existed experimental data and other RANS two-equations models in other researches and it demonstrate that Partially Navier-Stokes Simulation (PANS) approach results has admissible correspondence with experimental data in addition these results are accurate than RANS two- equations models.
Keywords:
Language:
Persian
Published:
Amirkabir Journal Mechanical Engineering, Volume:48 Issue: 3, 2016
Pages:
267 to 280
https://magiran.com/p1593402