Improving the performance of lattice Boltzmann method in order to numerical study of gas flows in nano scale porous media

Abstract:
The standard Lattice Boltzmann Method, LBM, is usually able to predict the results of micro scale flows which are corresponding to the slip flow regime, while it has not sufficient accuracy for nano scale flows which are corresponding to the transition flow regime. In this paper, by improving the lattice Boltzmann method, pressure driven flow through non-porous nano channels and nano channels filled with porous media has been modeled for wide range of Knudsen numbers, Kn, covering the slip and transition regimes. The results show that the presented lattice Boltzmann model is able to predict the flow features in micro and nano scales for wide range of Knudsen numbers by modifying the relaxation time. In the presented research, the effects of the Knudsen number and porosity on the flow rate, Darcy number and pressure drop are reported. Also, for the first time, the Knudsen’s minimum effect for micro/nano channels filled with porous media is observed and evaluated. For the pressure driven flows in non-porous channels this effect occurs at Kn=1, while the results show that for the nano channels filled with porous media this effect occurs at Kn=0.1 because of the tortuosity effects.
Language:
Persian
Published:
Iranian Journal of Mechanical Engineering, Volume:18 Issue: 2, 2016
Page:
87
https://magiran.com/p1606961