Comparative Study of Crude Oil Contamination Effect on Industrial and Forest Soil Microbial Community

Abstract:
Introduction
Petroleum hydrocarbons are widespread pollutant that enters to soil by some pathwayssuch as: Transportation of crude oil, conservation of oil compounds, crude oil spill and treatment process on refineries. Oil pollution has some ecological effect on soil that disturbed composition and diversity of microbial community. Also this pollution has some effects on microbial activity and enzymes of soil. Forests ecosystems may be polluted with petroleum hydrocarbons via different ways such as transportation and spill of crude oil from resource of petroleum storage. Industrial soil defined as the soils that located in industrial area such as petrochemical plant, mine, chemical factories and etc. These soils always contaminated to many pollutant such as: oil, diesel and heavy metals. These pollutants have some effects on the texture of the soil and microbial community. The aim of this research is to understand the effect of oil pollution on two different soils.
Material and
Methods
In order to evaluate the effect of crude oil on soil microbial community, two different soil samples were collected from industrial and forest soils. Six microcosms were designed in this experiment. Indeed each soil sample examined inthree microcosms asunpolluted microcosm, polluted microcosm, and polluted microcosm with nutrient supply of Nitrogen and PhosphorusSome factors were assayed in each microcosm during 120 days of experiment. The included study factors were: total heterotrophic bacteria, total crude oil degrading bacteria, dehydrogenase enzyme and crude oil biodegradation. For enumeration of heterotrophic bacteria nutrient agar medium was used. In this method serial dilutions were done from each soil and spread on nutrient agar medium then different colonies were counted. For enumeration of degrading bacteria Bushnel-Hass (BH) medium were used. The composition of this medium was (g/lit): 1 gr KH2PO4, 1gr K2HPO4, 0.2 gr MgSO4.7H2O, 0.02 gr CaCl2, 1 gr NH4NO3, and two drops of FeCl3 60% , the pH was 7. The carbon source of this medium was crude oil (1%). In MPN method microplates (24 well) were utilized and turbidity was calculated as positive index.
Results And Discussion
The results of this study showed that the highest quantity of heterotrophic bacteria was related to forest soil (8 × 108). The quantities of degradative bacteria significantly were lower than heterotrophic bacteria in all soil microcosms. This result may be expected because heterotrophic bacteria can use other carbon sources instead of crude oil such as organic carbon, suger and some nutrients that exist in the soil, but degrading bacteria have some limit in the use of organic carbons and only capable to use crude oil hydrocarbons. Sothe quantity of these bacteria is lower than heterotrophic bacteria. The quantity of degradative bacteria have decrement pattern until 60th day of experiment but after this day these bacteria have increment pattern. This result can be interpreted as from beginning of experiment until 60th day of experiment the bacteria adapted to toxic effect of crude oil and after this time the quantity of bacteria increased and have ability to use pollutant in the soil. The best deydrogenase activity between different microcosms related to polluted microcosm with nutrient. This result confirms that nitrogen and phosphorus can decrease the damage effect of crude oil on soil microbial community. The mechanism of this attenuation of toxicity effect of crude oil on microbial community can be related to enhance bioavailability of essential elements for bacteria in the soil. So after oil pollution of an area, soil supply upto nitrogen and phosphorus demand must be mentioned as a necessary practice to decrease the toxicity effect of pollutants. The highest biodegradation of crude oil in all studied soils belonged to industrial microcosm (95 %). It can be explained by adaptation theory because the bacteria in the industrial soil were better adapted to different pollutants and these bacteria have more capability for biodegradation of crude oil. By this reasonthe rate of degradation of crude oil in the industrial soil were higher than forest soil. Statistical analysis of the results showed that there was a significant correlation between MPN quantity of heterotrophic bacteria and other assayed factors. Also, forest soil seemed to have significant difference with other soils.
Conclusion
according to the obtained results by this study, it can be possibly proposed appropriate strategies for bioremediation of different studied soil types. The selection of best bioremediation strategies belong to specific types of soil. Just as this research confirmed that the type of soil plays significant role in the percentage of degradation.
Language:
Persian
Published:
Journal of water and soil, Volume:30 Issue: 4, 2016
Pages:
1219 to 1231
https://magiran.com/p1608746  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!