Elasto-plastic time dependent impact analysis of high speed projectile on water surface

Abstract:
In this paper, elasto-plastic time dependent impact of high-speed projectile on water surface is simulated numerically using Arbitrary Lagrangian- Eulerian (ALE) method. The projectile is considered as elasto-plastic solid and its mesh is generated by Lagrangian approach. The water is also assumed as compressible fluid so its mesh is produced by Eulerian method. Three steps simulation are performed in this research; static, dynamic stress analysis and also impact analysis of full degrees of freedom (DOF) projectile on water surface using ALE method. The effects of fluid compressibility and cavitation are considered in last analysis. In order to validate results, the stress wave propagation produced in the projectile due to water impact is compared with exact ones. The results show that the maximum error compare with exact ones is 5%. Also the magnitude of maximum stress and location/path of fracture in the projectile are compared with experimental data. The good agreement between the predicted and analytical/experimental values shows the accuracy of this numerical algorithm. The impact of projectile on water surface is simulated with different angles. The results show that the safe zone of impact angle for present projectile is ±0.5°.
Language:
Persian
Published:
Journal of Solid and Fluid Mechanics, Volume:6 Issue: 3, 2016
Pages:
281 to 298
https://magiran.com/p1632577  
مقالات دیگری از این نویسنده (گان)