Investigating the effect of viscoelastic ankle foot prosthesis on below-knee amputee gait cycle: Modeling and simulation
Author(s):
Abstract:
The purpose of this paper is to investigate the effect of viscoelastic ankle foot prosthesis on below-knee amputee gait cycle by using dynamic simulation of human walking. A two dimensional, seven segment model is developed to simulate normal and amputee entire gait cycle equipped with foot-ground contact model in order to simulate entire gait cycle in an integrated way. In the first step, optimization procedure was coupled with forward dynamic to simulate normal gait cycle. Next step was started by replacing ideal torque generator of ankle joint with passive elements that represents passive prosthetic ankle-foot, in order to simulate below-knee amputee gait cycle. The optimal coefficients of joints that were obtained from dynamic simulation of normal gait cycle were then used for amputee models intact joints. Three type of optimal passive ankle foot prosthesis were designed using forward dynamic optimization and the simulation results were employed to compare the performance of different prostheses. The results indicated that using viscoelastic ankle foot prosthesis decreases speed-normalized total work, cost function, dynamic effort and increases speed of the amputee model. Hence using viscoelastic ankle foot prosthesis can improve below-knee amputee walking pattern
Keywords:
Language:
Persian
Published:
Modares Mechanical Engineering, Volume:17 Issue: 1, 2017
Pages:
311 to 321
https://magiran.com/p1666099
مقالات دیگری از این نویسنده (گان)
-
Design and Evaluation of Dynamic Movement Orthosis on Functional Parameters in a Child With Spastic Diplegia Cerebral Palsy
Sedigheh Sadat Mirbagheri, Gholamreza Aminian, Mahmood Bahramizadeh*, Hamid Dalvand, , Mohsen Vahedi
Archives of Rehabilitation, -
Mechanical design of a 5-DOF robotic interface for application in haptic simulation systems of large-organ laparoscopic surgery
H. Jamshidifar, F. Farahmand *, S. Behzadipour, A. Mirbagheri
Scientia Iranica, Jan-Feb 2024