numerical investigation of thermal conductivty enhancement in porous medium treated with high conductive nanoparticles
Author(s):
Abstract:
Its possible to couple the EOR and nanotechnology to utilize the efficiency of both methods. This study is conducted in two steps, (1) experimental and (2) simulation. In the first stage of experimental section, a stable and uniform water-based solution of nano-sized particles of copper oxide with different concentrations (0.01 to 0.05 M) were prepared and then injected into the core samples. Then using a homemade apparatus, thermal conductivity of cores at different cases include dry core, water saturated, nano saturated and dried after one week was measured. The experimental results showed %25 and 6% enhancement of thermal conductivity of nano saturated and water saturated core, respectively relative to the dry core thermal conductivity. In the simulation section, the modeling domain was constructed with realistic morphology to represent cores structure. Structural details of cores are obtained by image processing of two captured images from thin sections of cores. The experimental data have been used and validations have been performed by comparing temperature difference variation along to the core for different cases. The simulation approach has been performed by solving heat transfer equations with a commercial finite element package (COMSOL). The Simulation results of two used models show that the thermal conductivity of nano saturated models have 14% and 8% enhancement, respectively. The obtained results are consistent with experimental data and simulate the improvement of ETC after nanofluid injection. The present study demonstrates that computational fluid dynamics can be a reliable approach to confirm empirical data.
Keywords:
Language:
Persian
Published:
Petroleum Research, Volume:26 Issue: 90, 2017
Pages:
74 to 87
https://magiran.com/p1671494