forced convective heat transfer of cu-water nanofluid over a constant surface temperature wedge
Author(s):
Abstract:
In this paper, the forced convective heat transfer of cu-water nanofluid over a wedge is investigated numerically. It is assumed that the flow of nanofluid is two-dimensional, laminar and incompressible. The boundary layer approximations are used to simplify the equations of momentum and energy. For solving the differential equations of momentum and energy, the similarity solution and the numerical Keller-Box method have been used. The effects of volume fraction of nanoparticles and wedge angle on the flow field and heat transfer rate are investigated. Numerical results for the dimensionless velocity and temperature profiles, the local friction coefficient and local Nusselt number are obtained. With the addition of copper nanoparticles , the hydrodynamic boundary layer thickness decreases and the thermal boundary layer thickness increased. The results indicate that the addition of nanoparticles increases the friction factor and Nusselt number. Also, increasing the wedge angle has the same effect on the friction factor and Nusselt number
Keywords:
Language:
Persian
Published:
Journal of Solid and Fluid Mechanics, Volume:6 Issue: 4, 2017
Pages:
343 to 353
https://magiran.com/p1695123