Soil Genesis as Affected by Climate and Geomorphic Surface in Rayen Area, Kerman Province

Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction
Genesis and development of soils are highly affected by soil forming factors and processes. Climate and topography (landform) are among the factors affecting weathering of parent material and genesis and development of soils in an area. Besides, various morphological, physical, and chemical properties, micromorphology, and clay mineralogy of soils at different geomorphic positions are usually affected by different soil forming factors including parent material and climate. The objectives of the present research were to study the effect of climate and geomorphology on physicochemical properties, micromorphology, and clay mineralogy of the soils in Rayen area, Kerman Province.
Materials And Methods
The study area starts from Hezar mountain elevations close to Rayen city (south east of Kerman Province) and extends to plateaus surfaces around Bam city. Quaternary and Neogene formations were found from geology point of view. Mean annual precipitation is in the range of 200-300 mm. Five landforms including rock pediment, mantled pediment, piedmont plain, plateaus, and valley were investigated during field work followed by topography, geology, and Google map studies in the area. According to 1:2500000 map provided by Soil and Water Research Institute, xeric and aridic soil moisture regimes together with mesic soil temperature regime were found in the area. Nine representative pedons were studied based on climatic regimes and different geomorphic surfaces. Pedons 1 and 2 were located on rock pediment with an aridic soil moisture regime. On the other hand, pedon 3 was located on the same surface, but with xeric moisture regime. Pedons 4 and 5 were also located on mantled pediment with aridic and xeric moisture regimes, respectively. Pedon 6 was located on piedmont plain and in the aridic moisture zone. Pedons 7, 8 (Plateaus), and 9 (Valley) were all in the aridic moisture zone. Physical and chemical properties, micromorphology, and clay mineralogy of soils were investigated and the soils were classified using USDA Soil Taxonomy (12th edition) and latest edition of World Reference Base for Soil Resources (WRB) systems.
Results And Discussion
Cambic, gypsic, argillic (or argic), calcic, and petrocalcic horizons were investigated during field and laboratory studies. Typic Haplocambids (pedons 1 and 2), Typic Calcixerepts (pedon 3), Typic Torriorthents (pedon 8), Calcic Petrocalcids (pedon 7), Typic Calcigypsids (pedon 6), Typic Xerorthents (pedon 5), Typic Haplocalcids (pedon 4), and Typic Calciargids (pedon 9) were classified using Soil Taxonomy (2014) and Gypsisols (pedon 6), Calcisols (pedons 3, 4, 7, and 9), Cambisols (pedons 1 and 2), and Regosols (pedons 5 and 8) Reference Soil Groups were determined using WRB (2015) system. Electrical conductivity increased from rock pediment toward valley and decreased from aridic toward xeric soil moisture regimes. Formation of argillic horizon in pedon 5 (Xeric moisture regime) was attributed to the climate of present time, but pedons 8 and 9 with aridic moisture regime could probably have experienced a climate with more available humidity for argillic horizon to be formed. Besides, petrocalcic horizon formation in pedon 7 was also attributed to a climate with more available humidity in the past. A buried soil (Btkb horizon) was determined in pedons 5 and 8 under the modern soil. Soil moisture regime change from aridic to xeric in rock pediment surface caused change of Aridisol to Inceptisol, but classification of soils in WRB system, was not affected. Secondary forms of calcium carbonate including powdery pocket, soft masses, and mycelium and secondary gypsum such as fine and coarse pendants were found during field studies. Calcite, gypsum, and clay coatings and infillings together with isolated gypsum crystals and gypsum interlocked plates were among dominant micromorphological pedofeatures investigated. Calcite coatings on aggregates and soil particles associated with clay coating prove the role of paleoclimate in soil formation. On the other hand, presence of manganaze nodules is an evidence of oxidation/reduction condition taken place in the xeric moisture conditions of pedon 5 (rock pediment). Illite, chlorite, kaolinite, and smectite were investigated in both rock and mantled pediments, but palygorskite was only found in mantled pediments. Climate also played a significant role in determining the source (pedogenic or geogenic) of clay minerals.
Conclusions
Results of this study clearly showed the close relationship among soil formation, topography (geomorphic surface) and climate. Soil physicochemical properties, micromorphology, clay mineralogy, and soil classification were highly affected by climate and geomorphology.
Language:
Persian
Published:
Journal of water and soil, Volume:31 Issue: 6, 2018
Pages:
1724 to 1739
https://magiran.com/p1809891  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!