Genotoxicity of magnetic Iron oxide )Fe3O4 (nanoparticles in red blood cells of common carp (Cyprinus carpio) using micronucleus assay under acute and chronic treatments

Message:
Abstract:
Aims
In nanoecotoxicology science, fish erythrocyte micronucleus assay for the monitoring genotoxic potential of nanoparticles is a powerful biomarker. This study was conducted with the aim of investigating genotoxicity of magnetic iron oxide (Fe3O4) nanoparticles in red blood cells of common carp (Cyprinus carpio) using micronucleus assay under acute and chronic treatment.
Materials and Methods
In the current experimental study, the genotoxit toxicology of Fe3O4 nanoparticles was performed during an acute (96 hours; 5 concentrations including 0, 10, 100, 500, and 1000 mg/l) and chronic (14 days; 3 concentrations including 0, 100, and 500 mg/l) of Fe3O4 nanoparticles in three replications. The data were analyzed by IBM SPSS 19, using two-way ANOVA, and Duncan's new multiple range test. Findings: Acute exposure to Fe3O4 nanoparticles had no acute toxicity effect juvenile carp (C. carpio). By increasing the concentration of nanoparticles in a 96-hour interval, the frequency of micronucleus (‰) and other abnormal forms around the red blood cell nucleus of juvenile carps showed a significant increase compared to the control group (p<0.05). In the chronic treatment at concentrations of 100 and 500 mg/l of Fe3O4 nanoparticles, the rate of increase in the frequency of micronucleus was similar to the acute functional test of concentration.
Conclusion
Although Fe3O4 nanoparticles do not have acute toxicity effects in common carp and are non-toxic, they tend to induce genotoxic effects by increasing the frequency of micronucleus and other abnormalities of the red blood cell core during a concentration-dependent process. So, it seems that the release of FeO4NPs into the environment, it is probable adverse effects on aquatic ecosystems.
Language:
Persian
Published:
Modares Journal of Biotechnology, Volume:9 Issue: 4, 2018
Pages:
537 to 547
https://magiran.com/p1923336