Experimental Evaluation of Rigid Connection with Reduced Section and Replaceable Fuse

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

The connection with reduced beam section was proposed after the 1994 Northridge earthquake. Until then, it was generally believed that connections with complete groove welding can withstand large plastic deformations. However, the cracks and brittle failures taken place in connections revealed that the actual ductility in these connections might be lower than what was predicted by design codes. By forming a plastic hinge outside the joint, this connection reduces the damage inflicted upon the panel zone. It has to be mentioned, however, that due to the concentration of damage in the reduced area, the entire beam has to be replaced after average earthquakes that is practically impossible. The aim of this study is to experimentally investigate the use of the reduced section in a replaceable fuse. The column and the beam were chosen to be made of sections equivalent to IPE 240 and IPB 180 wide flange profiles and the cyclic quasi-static load was applied until a drift of about 9 percent. The hysteresis moment-drift diagram was drawn. The first sample was a reduced beam section with end plate and stiffeners (RBS). Under loading, this sample satisfied the criteria for the ductility of special moment resisting frame. However, due to the fact that after an average or strong earthquake damage concentrates in the beam and replacing it after earthquake is either extremely difficult or not possible at all, it was tried to use a short replaceable fuse at the end of the beam in the second and third samples. The second sample incorporated a fuse with the length of 35.5 cm and a beam with a reduced flange (RBS-F). Since the ratio of the width of the flange to the height of the beam is directly correlated to its resistance against lateral-torsional buckling, cutting the beam in RBS connections causes different types of buckling to occur faster. To overcome this problem, in the third sample, only the height of the beam was decreased and the dimensions of the flange were not altered. Therefore, the third sample included a 35.5 cm long fuse and a beam with a reduced web (RWS-F). All of the samples satisfied the required drift for the rigid connection special moment resisting frames and using different types of RBS connections reduces the damage inflicted upon the column and the panel zone. The results showed that in addition to having very suitable ductility, the RBS-F and RWS-F samples can be very good post-earthquake replacements for conventional RBS connections

Language:
Persian
Published:
Earthquake Science and Engineering, Volume:5 Issue: 3, 2018
Pages:
125 to 137
https://magiran.com/p1945909  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!