پیش بینی دیابت با بهینه سازی الگوریتم نزدیک ترین همسایه توسط الگوریتم ژنتیک
نویسنده:
نوع مقاله:
مقاله پژوهشی/اصیل (دارای رتبه معتبر)
چکیده:
مقدمه
دیابت یا بیماری قند یک اختلال متابولیک سوخت و سازی در بدن است که توانایی تولید انسولین در بدن از بین می رود و انسولین تولیدی نمی تواند عملکرد طبیعی خود را انجام دهد. وجود علائم و ویژگی های مختلف این بیماری، تشخیص را برای پزشکان دشوار می کند. داده کاوی امکان تحلیل داده های بالینی بیماران برای تصمیم گیری های پزشکی را فراهم می کند. هدف این پژوهش، ارائه یک مدل برای افزایش دقت پیش بینی دیابت است.روش
در این مطالعه، پرونده پزشکی 1151 بیمار مبتلا به دیابت با تعداد 19 ویژگی مورد بررسی قرار گرفت. اطلاعات بیماران از پایگاه داده استاندارد UCI جمع آوری شد. هر یک از بیماران حداقل به مدت یک سال تحت پیگیری بودند. به منظور ارائه مدل پیش بینی دیابت از الگوریتم ژنتیک و نزدیک ترین همسایه استفاده شد.نتایج
نتایج نشان داد که دقت پیش بینی مدل پیشنهادی برابر با 0/76 بود. همچنین برایروش های نایو بیز، شبکه عصبی پرسپترون چند لایه و ماشین بردار پشتیبان دقت پیش بینی به ترتیب برابر با 0/62، 0/65 و 0/75 به دست آمد.نتیجه گیری
در پیش بینی دیابت،مدل پیشنهادی نسبت به سایر مدل های مورد مقایسه، دارای حداقل میزان خطا و بیش ترین دقت و صحت است. روش نایو بیز، حداکثر میزان خطا و کم ترین دقت را دارا می باشد.کلیدواژگان:
زبان:
فارسی
صفحات:
12 تا 23
لینک کوتاه:
https://www.magiran.com/p2000362