A simple model for accretion disks in the post-Newtonian approximation
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
p { margin-bottom: 0.1in; direction: ltr; line-height: 120%; text-align: left; }a:link { }
In this paper, the evolution of accretion disks in the post-Newtonian limit has been investigated. These disks are formed around gravitational compact objects such as black holes, neutron stars, or white dwarfs. Although most analytical researches have been conducted in this context in the framework of Newtonian dynamics and gravity, it is necessary to consider the effects of relativity on the structure of disks near the central body. To this end, by adding the post-Newtonian corrections to the hydrodynamic equations of the fluids, the equations for the time transformation of the accretion disks at the post-Newtonian limit were obtained; by using this equation, the surface density of the disk, which is dependent on radius and time, is got quasi- analytically. Finally, we compare the time evolution of the accretion disks in Newtonian and post-Newtonian gravity.
In this paper, the evolution of accretion disks in the post-Newtonian limit has been investigated. These disks are formed around gravitational compact objects such as black holes, neutron stars, or white dwarfs. Although most analytical researches have been conducted in this context in the framework of Newtonian dynamics and gravity, it is necessary to consider the effects of relativity on the structure of disks near the central body. To this end, by adding the post-Newtonian corrections to the hydrodynamic equations of the fluids, the equations for the time transformation of the accretion disks at the post-Newtonian limit were obtained; by using this equation, the surface density of the disk, which is dependent on radius and time, is got quasi- analytically. Finally, we compare the time evolution of the accretion disks in Newtonian and post-Newtonian gravity.
Keywords:
Language:
Persian
Published:
Iranian Journal of Physics Research (IJPR), Volume:19 Issue: 2, 2019
Pages:
273 to 283
https://magiran.com/p2015461