Numerical Analysis of RC Columns Retrofitted with Steel Cage
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Nowadays, reinforced concrete structures are widely being constructed all over the world and some of them need to be strengthened for variety of reasons such as poor design, damages caused by earthquakes, etc. Nowadays, engineering attitude toward demolition and renovation of structures have been changed to retrofitting and upgrading. By retrofitting, the structural reliability increases and saves both time and cost. In some of special cases that the structure can not be demolished and rebuilt, retrofitting plays an important role. The columns of the structures are one of the main elements that are subjected to axial, shear forces, and bending moments, and their strength and ductility have an important impact on their seismic capacity. Different methods are used for strengthening of columns. These methods include concrete jacketing, steel jacketing and composite jacketing (FRP). Among the various retrofitting methods of reinforced concrete columns, steel jacketing is one of the methods used to strengthening of RC structures, especially for confining RC columns with rectangular and square cross sections. Steel cage is a type of steel jacket and because of its effectiveness, ease of use, light weight and the availability of material, it has become an affordable, effective, economic and simple option. This method involves the use of four longitudinal angle steel profiles fixed to the corners of the RC columns, to which some transverse steel strips are welded. The gap between steel cage and column is filled with cement or epoxy mortar. Different parameters affect the behavior of the column reinforced with steel cage. Studies carried out on this strengthening method have mostly focused on the axially loaded columns. The parameters have been studied are the number of steel strips, the size of the steel strips, the size of the steel angels, the thickness of the steel strips, the yield stress of the steel of the cage, the compressive strength of the concrete used in the column, and, finally, the use of capitals in the beam-column connection joint zone. Capitals are welded to the steel cage and located at each end of the cage, loads applied to the beam are transmitted to the steel cage through the capitals. Loads from an upper floor of the building are also transmitted to the cage through the beam via the capitals. Current study investigates the behavior of RC columns strengthened with steel cage under axial force and bending moment. In this regard, the strengthened RC column with steel cage was modeled using finite element method using ABAQUS software and calibrated by experimental results obtained from other laboratory research works. Then, the parameters affecting the behavior of the strengthened columns were examined. The results of this study show a good agreement with experimental results and demonstrate a considerable increase in the ultimate axial force and bending moment.
Language:
Persian
Published:
Quranic Knowledge Research, Volume:19 Issue: 2, 2019
Pages:
125 to 138
https://magiran.com/p2022632
مقالات دیگری از این نویسنده (گان)
-
Evaluation and Comparison of Capability of Finite Element and Discrete Element Methods for Predicting In-plane Behavior of Unreinforced Masonry Wall
Mehrdad Aalijahan, *
Journal of Structural and Construction Engineering, -
Dynamic Analysis of Suspension Footbridges under Human-induced Vibrations and Near-field Earthquakes–Soti Ghat Bridge in Nepal
Bahram Samadi, *
Journal of Civil Engineering, Autumn 2020