Synthesis and characterization of tissue engineering network scaffold composed of polycaprolactone diol / polyethyleneglycol / hydroxyapatite
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
In this study, bone tissue engineering scaffolds were synthesized by radical crosslinking reaction of poly(ethyleneglycol) (PEG) diacrylates in the presence of polycaprolactone (PCL) and hydroxyapatite (HA) particles and particulate technique with sodium chloride. The prepared samples were characterized using techniques such as scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). Percent of porosity, pore size, swelling, gel fraction and mechanical properties were investigated. FTIR indicated that crosslinking between PEG chains were successfully done. The highly interconnected porous morphologies with macropores larger than 100 micron are observed in all scaffolds. The porosities of the scaffolds ranged from 69% to 74%. Results showed that increasing the ratio of PEGDA to polycaprolactone led to increase of swelling ratio and decrease of compressive modulus of the network, respectively. It was found that the incorporation of HA paticles with the polymer matrices resulted a decrease swelling ratio, and also an increased compressive modulus of the networks (from 0.96 Mpa to 1.122 MPa). Moreover, all networks had a gel fraction more than 94%. Thus, the results indicated that the PCL/PEG/HA scaffolds have the potential of being used as promising substrates in tissue engineering.
Keywords:
Language:
Persian
Published:
Journal of New Materials, Volume:10 Issue: 1, 2019
Pages:
33 to 46
https://magiran.com/p2055852