Analysis of Glioblastoma Multiforme Tumor Metabolites Using Multivoxel Magnetic Resonance Spectroscopy
Glioblastoma Multiforme (GBM) is the most common and deadly type of primary brain tumor in adults. Magnetic Resonance Spectroscopy (MRS) is a non-invasive imaging technique used to study metabolic changes in the brain tumors. Some metabolites such as Phosphocholine, Creatine, NAA/Cr, and Pcho/Cr have been proven to show a diagnostic role in GBM. The present study was conducted to analyze important metabolites using MRS multivoxel in GBM tumor.
In this study, information was collected from 8 individuals diagnosed with GBM using Siemens multivoxel MRS with a magnetic field strength of 3 T. Data were obtained by Point-Resolved Spectroscopy (PRESS) protocol with TE=135 ms and TR=1570 ms. NAA, Pcho, Cr, Ala, Gln, Gly, Glu, Lac, NAAG, and Tau metabolites were extracted and evaluated statistically.
Given total number of normal voxels and total number of all voxels, levels of Cr, Glu, NAA, NAAG, and Gly/Tau ratio in healthy voxels were significantly higher than tumoral voxels (p=0.005, p=0.03, p<0.001, p<0.001 and p=0.041, respectively). In contrast, levels of Gly, Gln, Tau, Lac/Cr, Pcho/Cr, Pcho/NAA, Lac/NAA, and Gln/Glu ratios in tumoral voxels were significantly more than healthy voxels (p=0.001, p=0.037, p<0.001, p=0.010, p<0.001, p<0.001, and p=0.024, respectively). However, levels of Lac and Pcho had no significant difference in the two types of voxels.
In summary, compared to patients with glioblastoma with 1H-MRS, the Pcho/Cr and Pcho/NAA ratios, and NAAG are the most important parameters to differentiate between tumoral and normal voxels.