Investigating the Effect of Compton Scattering Between PET-Ring Detectors on Image Quality by Monte Carlo Simulation
The Compton scattered annihilation gammas between PET detectors reduce spatial resolution by making an incorrect Line of Response. This paper, by presenting a new method, tried to remove these errors from PET imaging. In this way, the detectors were insulated so that scattered gammas from a detector can not enter other detectors of the PET ring.
First of all, the Siemens PET BiographTM 6 scanner ring was simulated and then all detectors of this ring were isolated to resolve this error and investigate its impact on the Response Function of PET detectors.
The analysis of the results of simulation showed that, the isolation of PET detectors reduced counts of detectors in the energy window, especially at the lower threshold (350 to 400 keV). This reduction with a spherical soft issue was less than without that. So that the maximum of the relative percentage difference for counts of detectors between connect and disconnect them was 70% (in 400 keV) and 12% (in 350 keV) in the absence and presence of soft tissue, respectively.
Although the isolation of the detectors boosted the resolution of PET, it removed some true coincidences and reduced the sensitivity of PET; there for, it did not have much effect on image quality of PET. Also, a slight decrease in the count, with the soft tissue, shows the greater effect of the isolation of PET-detectors in improving image quality in abdominal imaging in comparison with other imaging such as head and neck imaging.