Evaluation of Performance properties of Reclaimed Asphalt pavement (RAP) mixtures containing Warm Mix Asphalt (WMA) additives
The use of Reclaimed Asphalt Pavement (RAP) helps us save our natural resources and money. Of the different types of asphalt pavements that can be built, HMA pavements are considered the best in the terms of strength and durability. But the production temperature limits the amount of RAP used in the new mixture because this production`s high temperature requirement causes the deterioration of the aged binder of RAP and increases greemhouse gas emission. In the recent years there has been much focus on Warm Mix Asphalt (WMA) technology, because the aim of this approach is to reduce the production temperature by using additives which increase the workability of the binder at a lower temperature. The use of WMA additives helps us reduce the temperature while preserving the desired workability, thus enables HMA to contain higher percentages of RAP. The purpose of this experimental study was to evaluate the effect of production temperature reduction by using WMA additives on the performance properties of asphalt mixture containing 100% RAP. To reach this goal, five mixes were prepared and tested: a control mix (100% RAP-mixing temperature 150°C), three mixes with Sasobit, Rheofalt and without additives (mixing temperature of 130°C), and one virgin mix with extracted aggregate (mixing temperature of 160°C). The performance properties of the mixtures were evaluated based on indirect tensile strength, resilient module, four point beam fatigue test, and dynamic creep test etc. The results showed that the mixtures with WMA additives had better performance according to their moisture susceptibility and rutting potential, but the control mix had better performance in fatigue and low temperature cracking.