Performance analysis and investigation of the forces acting on the sea wave energy converter based on an oscillating water column under regular wave by numerical method
In this study, a wave-energy converter based on the Oscillating Water Column is simulated using numerical method. Reynolds averaged Navier-Stokes equations are solved by applying a numerical method based on computational fluid dynamics and using an open source OpenFOAM code. A suitable solver for considering the effects of free surface as well as the effects of turbulence is chosen. Numerical validation was performed based on the published experimental results and for a 2D problem. The changes in the water free surface inside the converter, the air pressure as well as the converter efficiency were presented and the effects of the wave parameters on the hydrodynamic performance of the converter were evaluated. Also, the forces acting on the OWC in different conditions are presenterd and can be used in the design of coastal structures. Using the current method and generating regular waves in a numerical tank, and accurately simulating the hydrodynamic characteristics of the converter, and examining the exact parameters of fluid that is not measurable in the experimental analysis, provides a precise and appropriate solution for achieving the best dimensions and location of the converter in terms of the real sea conditions. The accurate results of numerical simulation against the available experimental data and the possibility of detail analysis of flow characteristics versus experimental measurements are highlights of this study.