مدلسازی و طراحی بسترهای آکنده دوار با استفاده از روشهای هوش مصنوعی
در سال های اخیر توانایی بسترهای آکنده دوار در غبارزادیی از گازها مورد توجه صنایع مختلف قرار گرفته است. از سوی دیگر به دلیل پیچیدگی های فراوان اینگونه بسترها، به کارگیری دینامیک سیالات محاسباتی در طراحی و مدل سازی آنها بسیار دشوار خواهد بود. از همین رو در پژوهش حاضر، عملکرد روش های هوش مصنوعی در طراحی این تجهیزات مورد بررسی قرار گرفت. بر این اساس، ابتدا با بکارگیری 561 داده تجربی، سامانه ای مبتنی بر شبکه های عصبی مصنوعی توسعه داده شد. در این سامانه ویژگی های طراحی و شرایط کاری بستر بعنوان ورودی، و بازدهی بستر بعنوان خروجی مدل در نظر گرفته شد. عملکرد سامانه نیز مورد ارزیابی کیفی و کمی قرار گرفت و دستیابی به ضریب همبستگی 99/0 دقت مناسب آنرا در تخمین بازدهی نشان می دهد. در نهایت با استفاده از مدل آموزش داده شده در گام نخست و بکارگیری الگوریتم ژنتیک، روش نوینی جهت طراحی بهینه این بسترها با ویژگی های دلخواه و بازدهی مطلوب ارایه گردید. بررسی های صورت گرفته نشان داد که سامانه مذکور در عین سادگی، از دقت و انعطاف بالایی در طراحی بسترها برخوردار بوده و هزینه اندک توسعه، این روش را به ایده ای جذاب جهت بکارگیری در صنایع مبدل می کند.
-
بررسی کیفیت بنزین و نفت گاز بر اثر انحلال هیدروکربن های لجن نفتی
یاسر حمیدی، سید احمد عطائی*،
نشریه شیمی و مهندسی شیمی ایران، پاییز 1401 -
Chromate Ion Transfer Through Mortar by Accelerated Migration Method
N. Bakhshi, A. Sarrafi *, A.A. Ramezanian Pour
Journal of Civil Engineering, Winter and Spring 2019