Stock Price Prediction in Tehran Stock Exchange Using Artificial Neural Network Model and ARIMA Model: A Case Study of Two Active Pharmaceutical Companies in Stock Exchange

Author(s):
Message:
Article Type:
Case Study (دارای رتبه معتبر)
Abstract:

In This Study We Compare the Efficiency of Both Artificial Neural Network Prediction Methods (ANN) and Traditional Method of Auto Regressive Integrated Moving Average (ARIMA) in Predicting Stock Prices in Iranian Stock Market. For This Purpose, Four Pharmaceutical Companies, Alborz Drug, Iran Drug, Pars Drug, and Jam Drug Were Selected and ARIMA Model and Artificial Neural Network Model Were Estimated For All Four Companies. In Order to Estimate Artificial Neural Network Model, Stock Price Variable as Dependent Variable and Stock Trading Volume, Drug Industry Index, OPEC Oil Price, Exchange Rate and Gold Price are Considered as Independent Variables. MSE, RMSE, MAD, R2 and MAPE Criteria Were Used to Compare Two Models. In Order to Estimate the Stock Price Forecast Regression Model, Use of Auto Regressive Integrated Moving Average (ARIMA) Regression Is Used and Estimation of the Coefficients of the Model is Performed Using the EVIEWS Statistical Software. An Suitable ANN Model Was Created For Predicting Stock Prices Using MATLAB Software. The Results of the Research Showed That the Research Hypothesis is Correct and the Artificial Neural Network Model (ANN) Has a Better Predictor of Stock Price in the Iranian Stock Market Than the ARIMA Method.

Language:
Persian
Published:
Financial Engineering and Protfolio Management, Volume:11 Issue: 44, 2020
Pages:
350 to 371
https://magiran.com/p2210976