Numerical analysis of inter-yarn friction effects on the single-layer high-strength woven fabrics under high-velocity impact
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
It is known that friction has a significant effect on determination of the ballistic impact performance of woven fabrics. In this paper the ballistic behavior of fabrics woven from Twaron and Dyneema Aramid fibers against high velocity impact of a cylindrical projectile is investigated. This paper aims to numerically figure out the effects of inter-yarn friction performance including transverse deformation of fabrics, overall energy absorption and the forms of energy absorption. The numerical results show that increasing inter-yarn friction decreases the transverse deflection abilities of the fabrics and subsequently the response modes of them will transfer from a localized response to a globalized one. With the increase of inter-yarn friction, the energy absorption rate monotonously increases, while the failure time firstly decreases and then increases but further decreases again. Increasing inter-yarn friction also affect the forms of energy absorption. Near zero friction coeficient, strain energy is the dominant failure mechanism of a fabric. With the increase of inter-yarn friction, kinetic energy becomes the dominant failure mechanism. The frictional dissipation energy absorption is maximized for a finite inter-yarn friction. Experimental results were used to validate the results. The predicted values of the model show a good agreement with the experimental data. The correlation coefficient was 0.9426, which verify the accuracy of the simulation.
Keywords:
Language:
Persian
Published:
Amirkabir Journal Mechanical Engineering, Volume:52 Issue: 10, 2021
Pages:
161 to 170
https://magiran.com/p2213945