Preparation of biodegradable carboxymethyl cellulose-Arabic gum composite film and evaluation of its physical, mechanical and thermal properties

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Films with appropriate mechanical properties and low permeability are very important for food packaging. Natural polymers have gained increasing attention for the development of biodegradable films due to the environmental problems caused by petroleum-based polymers. Carboxymethyl cellulose (CMC) is a linear polysaccharide that exhibited good film forming properties. Gum Arabic (GA) is another polysaccharide that can be used for preparing the edible and biodegradable films. However, several studies have shown that biopolymers like CMC and GA films have high water vapor permeability and poor mechanical properties in moist conditions. One of the strategies that can be used for improving the properties of biopolymers films is blending the different polymers and formation the composite films. Various studies on the preparation of biocomposite films have been performed, however, to the best of our knowledge, studies on combinations of the CMC and AG have not been reported yet. Thus, the main objectives of this study were to prepare CMC/AG composite films using solvent casting method and investigate the effect of different CMC/AG blending ratio on the physical (water vapor permeability (WVP), water contact angle (WCA), color, opacity and light-barrier properties), mechanical and thermal properties. Furthermore, in order to determine the structural characteristics of the films, fourier-transform infrared spectroscopy (FT-IR) and x-ray diffraction (XRD) measurements were also performed.   Material &

Method

The CMC and AG solutions were prepared by dissolving 1 g in 100 mL of distilled water at 45 °C for 24 h under magnetic stirring. The prepared solutions were then blended in different proportions (75:25, 50:50, and 25:75). After mixing, glycerol (0.3% w/w) was added as a plasticizer and the solution was stirred for 15 min. The prepared solutions were poured into a glass plate, then dried at 45 °C for 24 h in the oven. Finally, the properties of CMC, GA and composite films were determined.  

Result and Discussion

In this study, biodegradable films composed of CMC and AG were successfully prepared. Results showed that some properties of the composite films were greatly influenced by addition of AG. So that, WVP of films was decreased significantly in the blend films and the lowest WVP was observed in the 25:75 (AG: CMC) films (p < 0.05). The films hydrophobicity was significantly increased from 41.33o to 61.10o by addition of AG to the CMC films (p < 0.05). With increasing the ratio of AG, the tensile strength (TS) of blend films decreased. Opacity and light transmission of the composite films increased and decreased, respectively with increasing the AG ratio. The differential scanning calorimetry (DSC) test demonstrated that the thermal properties of blend films improved with increasing the AG content. The FT-IR analysis indicated that new interaction was generated between the components of the blend films. Generally, it can be concluded that blending the AG and CMC can improve some of the physico-mechanical properties of the blend films

Language:
Persian
Published:
Iranian Food Science and Technology Research Journal, Volume:17 Issue: 2, 2021
Pages:
287 to 297
https://magiran.com/p2221524  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!