Penalized Estimators in Cox Regression Model
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regression model. Among all penalty functions, LASSO provides the best fit.
Keywords:
Language:
Persian
Published:
Andishe-ye Amari, Volume:25 Issue: 1, 2021
Pages:
53 to 67
https://magiran.com/p2224834
سامانه نویسندگان
از نویسنده(گان) این مقاله دعوت میکنیم در سایت ثبتنام کرده و این مقاله را به فهرست مقالات رزومه خود پیوست کنند.
راهنما
مقالات دیگری از این نویسنده (گان)
-
On shrinkage estimation under divergence loss
*, Hidekazu Tanaka, Morteza Amini
Stochastic Models in Probability and Statistics, Winter and Spring 2025 -
Differenced-Based Double Shrinking in Partial Linear Models
Mina Norouzirad *, , Mahdi Roozbeh
Journal of Data Science and Modeling, Summer and Autumn 2022